scispace - formally typeset
Search or ask a question
Author

Afzel Noore

Bio: Afzel Noore is an academic researcher from Texas A&M University–Kingsville. The author has contributed to research in topics: Facial recognition system & Biometrics. The author has an hindex of 31, co-authored 129 publications receiving 3470 citations. Previous affiliations of Afzel Noore include West Virginia University & Indraprastha Institute of Information Technology.


Papers
More filters
Journal ArticleDOI
01 Aug 2008
TL;DR: This paper proposes algorithms for iris segmentation, quality enhancement, match score fusion, and indexing to improve both the accuracy and the speed of iris recognition.
Abstract: This paper proposes algorithms for iris segmentation, quality enhancement, match score fusion, and indexing to improve both the accuracy and the speed of iris recognition. A curve evolution approach is proposed to effectively segment a nonideal iris image using the modified Mumford-Shah functional. Different enhancement algorithms are concurrently applied on the segmented iris image to produce multiple enhanced versions of the iris image. A support-vector-machine-based learning algorithm selects locally enhanced regions from each globally enhanced image and combines these good-quality regions to create a single high-quality iris image. Two distinct features are extracted from the high-quality iris image. The global textural feature is extracted using the 1-D log polar Gabor transform, and the local topological feature is extracted using Euler numbers. An intelligent fusion algorithm combines the textural and topological matching scores to further improve the iris recognition performance and reduce the false rejection rate, whereas an indexing algorithm enables fast and accurate iris identification. The verification and identification performance of the proposed algorithms is validated and compared with other algorithms using the CASIA Version 3, ICE 2005, and UBIRIS iris databases.

285 citations

Journal ArticleDOI
TL;DR: The results on the plastic surgery database suggest that it is an arduous research challenge and the current state-of-art face recognition algorithms are unable to provide acceptable levels of identification performance, so that future face recognition systems will be able to address this important problem.
Abstract: Advancement and affordability is leading to the popularity of plastic surgery procedures. Facial plastic surgery can be reconstructive to correct facial feature anomalies or cosmetic to improve the appearance. Both corrective as well as cosmetic surgeries alter the original facial information to a large extent thereby posing a great challenge for face recognition algorithms. The contribution of this research is 1) preparing a face database of 900 individuals for plastic surgery, and 2) providing an analytical and experimental underpinning of the effect of plastic surgery on face recognition algorithms. The results on the plastic surgery database suggest that it is an arduous research challenge and the current state-of-art face recognition algorithms are unable to provide acceptable levels of identification performance. Therefore, it is imperative to initiate a research effort so that future face recognition systems will be able to address this important problem.

187 citations

Journal ArticleDOI
TL;DR: An integrated image fusion and match score fusion of multispectral face images using [email protected] SVM and Dezert Smarandache theory of fusion which is based on plausible and paradoxical reasoning is presented.
Abstract: This paper presents an integrated image fusion and match score fusion of multispectral face images. The fusion of visible and long wave infrared face images is performed using [email protected] SVM which uses multiple SVMs to learn both the local and global properties of the multispectral face images at different granularity levels and resolution. The [email protected] performs accurate classification which is subsequently used to dynamically compute the weights of visible and infrared images for generating a fused face image. 2D log polar Gabor transform and local binary pattern feature extraction algorithms are applied to the fused face image to extract global and local facial features, respectively. The corresponding match scores are fused using Dezert Smarandache theory of fusion which is based on plausible and paradoxical reasoning. The efficacy of the proposed algorithm is validated using the Notre Dame and Equinox databases and is compared with existing statistical, learning, and evidence theory based fusion algorithms.

176 citations

Journal ArticleDOI
TL;DR: Numerical results show that both the goodness-of-fit and the next-step-predictability of the proposed approach have greater accuracy in predicting software cumulative failure time compared to existing approaches.
Abstract: An evolutionary neural network modeling approach for software cumulative failure time prediction based on multiple-delayed-input single-output architecture is proposed. Genetic algorithm is used to globally optimize the number of the delayed input neurons and the number of neurons in the hidden layer of the neural network architecture. Modification of Levenberg–Marquardt algorithm with Bayesian regularization is used to improve the ability to predict software cumulative failure time. The performance of our proposed approach has been compared using real-time control and flight dynamic application data sets. Numerical results show that both the goodness-of-fit and the next-step-predictability of our proposed approach have greater accuracy in predicting software cumulative failure time compared to existing approaches.

151 citations

Journal ArticleDOI
TL;DR: This paper presents a face recognition algorithm that addresses two major challenges: when an individual intentionally alters the appearance and features using disguises, and when limited gallery images are available for recognition.
Abstract: This paper presents a face recognition algorithm that addresses two major challenges. The first is when an individual intentionally alters the appearance and features using disguises, and the second is when limited gallery images are available for recognition. The algorithm uses a dynamic neural network architecture to extract the phase features of the face texture using 2D log polar Gabor transform. The phase features are divided into frames which are matched using the Hamming distance. The performance of the proposed algorithm is evaluated using three databases that comprise of real and synthetic face images with different disguise artifacts. The performance of the algorithm is evaluated for decreasing number of gallery images and various types of disguises. In all cases the proposed algorithm shows a better performance compared to other existing algorithms.

112 citations


Cited by
More filters
01 Jan 1979
TL;DR: This special issue aims at gathering the recent advances in learning with shared information methods and their applications in computer vision and multimedia analysis and addressing interesting real-world computer Vision and multimedia applications.
Abstract: In the real world, a realistic setting for computer vision or multimedia recognition problems is that we have some classes containing lots of training data and many classes contain a small amount of training data. Therefore, how to use frequent classes to help learning rare classes for which it is harder to collect the training data is an open question. Learning with Shared Information is an emerging topic in machine learning, computer vision and multimedia analysis. There are different level of components that can be shared during concept modeling and machine learning stages, such as sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, etc. Regarding the specific methods, multi-task learning, transfer learning and deep learning can be seen as using different strategies to share information. These learning with shared information methods are very effective in solving real-world large-scale problems. This special issue aims at gathering the recent advances in learning with shared information methods and their applications in computer vision and multimedia analysis. Both state-of-the-art works, as well as literature reviews, are welcome for submission. Papers addressing interesting real-world computer vision and multimedia applications are especially encouraged. Topics of interest include, but are not limited to: • Multi-task learning or transfer learning for large-scale computer vision and multimedia analysis • Deep learning for large-scale computer vision and multimedia analysis • Multi-modal approach for large-scale computer vision and multimedia analysis • Different sharing strategies, e.g., sharing generic object parts, sharing attributes, sharing transformations, sharing regularization parameters and sharing training examples, • Real-world computer vision and multimedia applications based on learning with shared information, e.g., event detection, object recognition, object detection, action recognition, human head pose estimation, object tracking, location-based services, semantic indexing. • New datasets and metrics to evaluate the benefit of the proposed sharing ability for the specific computer vision or multimedia problem. • Survey papers regarding the topic of learning with shared information. Authors who are unsure whether their planned submission is in scope may contact the guest editors prior to the submission deadline with an abstract, in order to receive feedback.

1,758 citations

Journal ArticleDOI
TL;DR: A thorough survey to fully understand Few-shot Learning (FSL), and categorizes FSL methods from three perspectives: data, which uses prior knowledge to augment the supervised experience; model, which used to reduce the size of the hypothesis space; and algorithm, which using prior knowledgeto alter the search for the best hypothesis in the given hypothesis space.
Abstract: Machine learning has been highly successful in data-intensive applications but is often hampered when the data set is small. Recently, Few-shot Learning (FSL) is proposed to tackle this problem. Using prior knowledge, FSL can rapidly generalize to new tasks containing only a few samples with supervised information. In this article, we conduct a thorough survey to fully understand FSL. Starting from a formal definition of FSL, we distinguish FSL from several relevant machine learning problems. We then point out that the core issue in FSL is that the empirical risk minimizer is unreliable. Based on how prior knowledge can be used to handle this core issue, we categorize FSL methods from three perspectives: (i) data, which uses prior knowledge to augment the supervised experience; (ii) model, which uses prior knowledge to reduce the size of the hypothesis space; and (iii) algorithm, which uses prior knowledge to alter the search for the best hypothesis in the given hypothesis space. With this taxonomy, we review and discuss the pros and cons of each category. Promising directions, in the aspects of the FSL problem setups, techniques, applications, and theories, are also proposed to provide insights for future research.1

1,129 citations

Book
Michael R. Lyu1
30 Apr 1996
TL;DR: Technical foundations introduction software reliability and system reliability the operational profile software reliability modelling survey model evaluation and recalibration techniques practices and experiences and best current practice of SRE software reliability measurement experience.
Abstract: Technical foundations introduction software reliability and system reliability the operational profile software reliability modelling survey model evaluation and recalibration techniques practices and experiences best current practice of SRE software reliability measurement experience measurement-based analysis of software reliability software fault and failure classification techniques trend analysis in validation and maintenance software reliability and field data analysis software reliability process assessment emerging techniques software reliability prediction metrics software reliability and testing fault-tolerant SRE software reliability using fault trees software reliability process simulation neural networks and software reliability. Appendices: software reliability tools software failure data set repository.

1,068 citations

Journal ArticleDOI
TL;DR: This survey aims at providing multimedia researchers with a state-of-the-art overview of fusion strategies, which are used for combining multiple modalities in order to accomplish various multimedia analysis tasks.
Abstract: This survey aims at providing multimedia researchers with a state-of-the-art overview of fusion strategies, which are used for combining multiple modalities in order to accomplish various multimedia analysis tasks. The existing literature on multimodal fusion research is presented through several classifications based on the fusion methodology and the level of fusion (feature, decision, and hybrid). The fusion methods are described from the perspective of the basic concept, advantages, weaknesses, and their usage in various analysis tasks as reported in the literature. Moreover, several distinctive issues that influence a multimodal fusion process such as, the use of correlation and independence, confidence level, contextual information, synchronization between different modalities, and the optimal modality selection are also highlighted. Finally, we present the open issues for further research in the area of multimodal fusion.

1,019 citations