scispace - formally typeset
Search or ask a question
Author

Agnes Ellinghaus

Bio: Agnes Ellinghaus is an academic researcher from Charité. The author has contributed to research in topics: Bone healing & Bone regeneration. The author has an hindex of 15, co-authored 23 publications receiving 794 citations.

Papers
More filters
Journal ArticleDOI
01 Jul 2014-Bone
TL;DR: Both, osteoblasts and osteoclasts were found to have direct cell-cell contact with lymphocytes, strongly suggesting a regulatory role of the immune cells specifically in the later stages of fracture healing.

142 citations

Journal ArticleDOI
TL;DR: It is shown that a biomaterial scaffold with a channel-like pore architecture enables organized endochondral ossification through directional cell recruitment and extracellular matrix alignment and that a pure biomaterial approach has the potential to recapitulate a developmental bone growth process for bone healing.
Abstract: Biomaterials developed to treat bone defects have classically focused on bone healing via direct, intramembranous ossification. In contrast, most bones in our body develop from a cartilage template via a second pathway called endochondral ossification. The unsolved clinical challenge to regenerate large bone defects has brought endochondral ossification into discussion as an alternative approach for bone healing. However, a biomaterial strategy for the regeneration of large bone defects via endochondral ossification is missing. Here we report on a biomaterial with a channel-like pore architecture to control cell recruitment and tissue patterning in the early phase of healing. In consequence of extracellular matrix alignment, CD146+ progenitor cell accumulation and restrained vascularization, a highly organized endochondral ossification process is induced in rats. Our findings demonstrate that a pure biomaterial approach has the potential to recapitulate a developmental bone growth process for bone healing. This might motivate future strategies for biomaterial-based tissue regeneration.

121 citations

Journal ArticleDOI
TL;DR: In vivo experiments demonstrate the efficacy ofStructured hydrogels showing form stability and elastic properties individually tailorable on different length scales in biomaterial-induced bone regeneration, not requiring addition of cells or growth factors.
Abstract: Structured hydrogels showing form stability and elastic properties individually tailorable on different length scales are accessible in a one-step process. They support cell adhesion and differentiation and display growing pore size during degradation. In vivo experiments demonstrate their efficacy in biomaterial-induced bone regeneration, not requiring addition of cells or growth factors.

94 citations

Journal ArticleDOI
TL;DR: This alginate-based material platform with cell-empowered enzymatic degradation could prove useful in diverse tissue engineering contexts, such as regeneration and drug delivery.

83 citations

Journal ArticleDOI
TL;DR: Mechanical loading further enhanced the efficacy of BMP2 application evidenced by increased mineralized tissue volume and mineralization at the stage of bony callus bridging, suggesting that already a minimal amount of mechanical stimulation through load bearing or exercise may be a promising adjunct stimulus to enhance the effectiveness of cytokine treatment in segmental defects.
Abstract: Introduction: Local application of bone morphogenetic proteins (BMPs) at the fracture site is known to stimulate bone regeneration. However, recent studies illustrate that the BMP-initiated mineralization may be enhanced by additional mechanical stimulation. Therefore, bone healing was monitored in vivo in order to investigate the effect of mechanical loading on the initiation and maturation of mineralization after cytokine treatment. We hypothesized that the mechanical stimulation would further enhance the efficacy of BMP2 treatment. Method: Female Sprague-Dawley rats underwent a 5-mm defect, stabilized with an external fixator. Type I collagen scaffolds containing 50 μg of BMP2 diluted in a solvent or solvent only were placed into the defects. The BMP2-treated specimens and control specimens were then each divided into two groups: one that underwent mechanical loading and a nonloaded group. In vivo loading began immediately after surgery and continued once per week for the entire 6-week experimental per...

75 citations


Cited by
More filters
Journal ArticleDOI
24 Dec 2004-Science

1,949 citations

Journal ArticleDOI
26 Aug 2020-Nature
TL;DR: The role of viscoelasticity of tissues and extracellular matrices in cell–matrix interactions and mechanotransduction and the potential utility of vis coelastic biomaterials in regenerative medicine are explored.
Abstract: Substantial research over the past two decades has established that extracellular matrix (ECM) elasticity, or stiffness, affects fundamental cellular processes, including spreading, growth, proliferation, migration, differentiation and organoid formation. Linearly elastic polyacrylamide hydrogels and polydimethylsiloxane (PDMS) elastomers coated with ECM proteins are widely used to assess the role of stiffness, and results from such experiments are often assumed to reproduce the effect of the mechanical environment experienced by cells in vivo. However, tissues and ECMs are not linearly elastic materials-they exhibit far more complex mechanical behaviours, including viscoelasticity (a time-dependent response to loading or deformation), as well as mechanical plasticity and nonlinear elasticity. Here we review the complex mechanical behaviours of tissues and ECMs, discuss the effect of ECM viscoelasticity on cells, and describe the potential use of viscoelastic biomaterials in regenerative medicine. Recent work has revealed that matrix viscoelasticity regulates these same fundamental cell processes, and can promote behaviours that are not observed with elastic hydrogels in both two- and three-dimensional culture microenvironments. These findings have provided insights into cell-matrix interactions and how these interactions differentially modulate mechano-sensitive molecular pathways in cells. Moreover, these results suggest design guidelines for the next generation of biomaterials, with the goal of matching tissue and ECM mechanics for in vitro tissue models and applications in regenerative medicine.

776 citations

Journal ArticleDOI
01 May 2016-Bone
TL;DR: In this review, a comprehensive summary of the literature related to inflammation and bone repair is provided, placing special emphasis on the underlying cellular and molecular mechanisms, and potential interventions that can favorably modulate the outcome of clinical conditions that involve bone repair.

732 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of materials-design considerations for bone-tissue-engineering applications in both disease modelling and treatment of injuries and disease in humans, and highlight scalable technologies that can fabricate natural and synthetic biomaterials (polymers, bioceramics, metals and composites) into forms suitable for bone tissue engineering applications in human therapies and disease models.
Abstract: Successful materials design for bone-tissue engineering requires an understanding of the composition and structure of native bone tissue, as well as appropriate selection of biomimetic natural or tunable synthetic materials (biomaterials), such as polymers, bioceramics, metals and composites. Scalable fabrication technologies that enable control over construct architecture at multiple length scales, including three-dimensional printing and electric-field-assisted techniques, can then be employed to process these biomaterials into suitable forms for bone-tissue engineering. In this Review, we provide an overview of materials-design considerations for bone-tissue-engineering applications in both disease modelling and treatment of injuries and disease in humans. We outline the materials-design pathway from implementation strategy through selection of materials and fabrication methods to evaluation. Finally, we discuss unmet needs and current challenges in the development of ideal materials for bone-tissue regeneration and highlight emerging strategies in the field. Design of bone-tissue-engineering materials involves consideration of multiple, often conflicting, requirements. This Review discusses these considerations and highlights scalable technologies that can fabricate natural and synthetic biomaterials (polymers, bioceramics, metals and composites) into forms suitable for bone-tissue-engineering applications in human therapies and disease models.

630 citations