scispace - formally typeset
Search or ask a question
Author

Agnès Pallier

Bio: Agnès Pallier is an academic researcher from University of Orléans. The author has contributed to research in topics: Carboxylate & Ligand. The author has an hindex of 13, co-authored 27 publications receiving 606 citations. Previous affiliations of Agnès Pallier include Centre national de la recherche scientifique.

Papers
More filters
Journal ArticleDOI
TL;DR: This work represents a demonstration of the possibility of using NIR lanthanide emission for biological imaging applications in living cells with single-photon excitation in nano-MOFs incorporated into living cells for NIR imaging.
Abstract: We have created unique near-infrared (NIR)–emitting nanoscale metal-organic frameworks (nano-MOFs) incorporating a high density of Yb3+ lanthanide cations and sensitizers derived from phenylene. We establish here that these nano-MOFs can be incorporated into living cells for NIR imaging. Specifically, we introduce bulk and nano-Yb-phenylenevinylenedicarboxylate-3 (nano-Yb-PVDC-3), a unique MOF based on a PVDC sensitizer-ligand and Yb3+ NIR-emitting lanthanide cations. This material has been structurally characterized, its stability in various media has been assessed, and its luminescent properties have been studied. We demonstrate that it is stable in certain specific biological media, does not photobleach, and has an IC50 of 100 μg/mL, which is sufficient to allow live cell imaging. Confocal microscopy and inductively coupled plasma measurements reveal that nano-Yb-PVDC-3 can be internalized by cells with a cytoplasmic localization. Despite its relatively low quantum yield, nano-Yb-PVDC-3 emits a sufficient number of photons per unit volume to serve as a NIR-emitting reporter for imaging living HeLa and NIH 3T3 cells. NIR microscopy allows for highly efficient discrimination between the nano-MOF emission signal and the cellular autofluorescence arising from biological material. This work represents a demonstration of the possibility of using NIR lanthanide emission for biological imaging applications in living cells with single-photon excitation.

232 citations

Journal ArticleDOI
TL;DR: In this paper, the proposed nanolipoparticles, which contain both lanthanides and photosensitizer molecules, offer new opportunities in therapy and diagnosis, by transferring visible energy to a photo-sensor and triggering photodynamic therapy (PDT) even in deep tumors.
Abstract: Upon X-ray irradiation, lanthanide transfers visible energy to a photosensitizer, leading to local reactive oxygen species (ROS) production and triggering photodynamic therapy (PDT), even in deep tumors. The proposed nanolipoparticles, which contain both lanthanides and photosensitizer molecules, offer new opportunities in therapy and diagnosis.

79 citations

Journal ArticleDOI
TL;DR: The ability of the gadolinium(III) conjugate to penetrate in cancer cells with low cytotoxicity and its phototoxicity on Hela cells was evaluated demonstrate the high potential of this conjugates as a theranostic agent for MRI and PDT.
Abstract: A molecular theranostic agent for magnetic resonance imaging (MRI) and photodynamic therapy (PDT) consisting of four [GdDTTA]− complexes (DTTA4− = diethylenetriamine-N,N,N″,N″-tetraacetate) linked to a meso-tetraphenylporphyrin core, as well as its yttrium(III) analogue, was synthesized. A variety of physicochemical methods were used to characterize the gadolinium(III) conjugate 1 both as an MRI contrast agent and as a photosensitizer. The proton relaxivity measured in H2O at 20 MHz and 25 °C, r1 = 43.7 mmol–1 s–1 per gadolinium center, is the highest reported for a bishydrated gadolinium(III)-based contrast agent of medium size and can be related to the rigidity of the molecule. The complex displays also a remarkable singlet oxygen quantum yield of ϕΔ = 0.45 in H2O, similar to that of a meso-tetrasulfonated porphyrin. We also evidenced the ability of the gadolinium(III) conjugate to penetrate in cancer cells with low cytotoxicity. Its phototoxicity on Hela cells was evaluated following incubation at low ...

44 citations

Journal ArticleDOI
TL;DR: In vivo MRI experiments in mice and determination of the tissue Mn content evidence rapid renal clearance of MnL 1 and the strongly preorganized structure of the 2,4-pyridyl-disubstituted bispidol ligand L 1 endows its Mn 2+ complex with exceptional kinetic inertness.
Abstract: The search for more biocompatible alternatives to Gd3+ -based MRI agents, and the interest in 52 Mn for PET imaging call for ligands that form inert Mn2+ chelates. Given the labile nature of Mn2+ , high inertness is challenging to achieve. The strongly preorganized structure of the 2,4-pyridyl-disubstituted bispidol ligand L1 endows its Mn2+ complex with exceptional kinetic inertness. Indeed, MnL1 did not show any dissociation for 140 days in the presence of 50 equiv. of Zn2+ (37 °C, pH 6), while recently reported potential MRI agents MnPyC3A and MnPC2A-EA have dissociation half-lives of 0.285 h and 54.4 h under similar conditions. In addition, the relaxivity of MnL1 (4.28 mm-1 s-1 at 25 °C, 20 MHz) is remarkable for a monohydrated, small Mn2+ chelate. In vivo MRI experiments in mice and determination of the tissue Mn content evidence rapid renal clearance of MnL1 . Additionally, L1 could be radiolabeled with 52 Mn and the complex revealed good stability in biological media.

42 citations

Journal ArticleDOI
TL;DR: In this paper, a new series of amphiphilic polymers (amphipols) with varied molecular characteristics was prepared, and their properties in aqueous media were examined by static and dynamic light scattering techniques.
Abstract: A new series of amphiphilic polymers (amphipols) with varied molecular characteristics was prepared, and their properties in aqueous media were examined by static and dynamic light scattering techniques. These polymers are short poly(sodium methacrylate) chains of various molecular weights and tacticities, modified with different degrees of n-octylamine as copolymers of two distinct hydrophobe distribution sequences (random vs multiblocky). To synthesize the parent poly(methacrylic acid) (PMAA) prior to hydrophobic modification, tert-butyl methacrylate was polymerized under the controlled conditions of atom transfer radical polymerization (ATRP) to yield after deprotection the syndiotactic-rich PMAA of targeted molar masses (12−28 kg mol-1) and low polydispersity indexes (1.08−1.19). Under similar conditions of ATRP and deprotection, a well-defined isotactic-rich PMAA was obtained from triphenylmethyl methacrylate. The amphipol carrying octyl side chains randomly distributed along the polymer main chain w...

37 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The current status and possible opportunities for ROS generation for cancer therapy are summarized and it is hoped this review will spur pre-clinical research and clinical practice for ROS-mediated tumour treatments.
Abstract: The reactive oxygen species (ROS)-mediated mechanism is the major cause underlying the efficacy of photodynamic therapy (PDT). The PDT procedure is based on the cascade of synergistic effects between light, a photosensitizer (PS) and oxygen, which greatly favors the spatiotemporal control of the treatment. This procedure has also evoked several unresolved challenges at different levels including (i) the limited penetration depth of light, which restricts traditional PDT to superficial tumours; (ii) oxygen reliance does not allow PDT treatment of hypoxic tumours; (iii) light can complicate the phototherapeutic outcomes because of the concurrent heat generation; (iv) specific delivery of PSs to sub-cellular organelles for exerting effective toxicity remains an issue; and (v) side effects from undesirable white-light activation and self-catalysation of traditional PSs. Recent advances in nanotechnology and nanomedicine have provided new opportunities to develop ROS-generating systems through photodynamic or non-photodynamic procedures while tackling the challenges of the current PDT approaches. In this review, we summarize the current status and discuss the possible opportunities for ROS generation for cancer therapy. We hope this review will spur pre-clinical research and clinical practice for ROS-mediated tumour treatments.

1,305 citations

Journal ArticleDOI
TL;DR: In this article, the intrinsic biochemical properties of reactive oxygen species (ROS) underlie the mechanisms that regulate various physiological functions of living organisms, and they play an essential role in regulating various physiological function.
Abstract: Reactive oxygen species (ROS) play an essential role in regulating various physiological functions of living organisms. The intrinsic biochemical properties of ROS, which underlie the mechanisms ne...

1,260 citations

Journal ArticleDOI
TL;DR: The bright potential of MOF materials as emerging multifunctional materials is highlighted in some of the most important applications for gas storage and separation, optical, electric and magnetic materials, chemical sensing, catalysis, and biomedicine.
Abstract: Metal-organic frameworks (MOFs), also known as coordination polymers, represent an interesting type of solid crystalline materials that can be straightforwardly self-assembled through the coordination of metal ions/clusters with organic linkers. Owing to the modular nature and mild conditions of MOF synthesis, the porosities of MOF materials can be systematically tuned by judicious selection of molecular building blocks, and a variety of functional sites/groups can be introduced into metal ions/clusters, organic linkers, or pore spaces through pre-designing or post-synthetic approaches. These unique advantages enable MOFs to be used as a highly versatile and tunable platform for exploring multifunctional MOF materials. Here, the bright potential of MOF materials as emerging multifunctional materials is highlighted in some of the most important applications for gas storage and separation, optical, electric and magnetic materials, chemical sensing, catalysis, and biomedicine.

1,120 citations

Journal ArticleDOI
TL;DR: It is highly expected that deep PDT will be developed as a versatile, depth/oxygen-independent and minimally invasive strategy for treating a variety of malignant tumours at deep locations.
Abstract: Photodynamic therapy (PDT) has been applied to treat a wide range of medical conditions, including wet age-related macular degeneration psoriasis, atherosclerosis, viral infection and malignant cancers. However, the tissue penetration limitation of excitation light hinders the widespread clinical use of PDT. To overcome this “Achilles' heel”, deep PDT, a novel type of phototherapy, has been developed for the efficient treatment of deep-seated diseases. Based on the different excitation sources, including near-infrared (NIR) light, X-ray radiation, and internal self-luminescence, a series of deep PDT techniques have been explored to demonstrate the advantages of deep cancer therapy over conventional PDT excited by ultraviolet-visible (UV-Vis) light. In particular, the featured applications of deep PDT, such as organelle-targeted deep PDT, hypoxic deep PDT and deep PDT-involved multimodal synergistic therapy are discussed. Finally, the future development and potential challenges of deep PDT are also elucidated for clinical translation. It is highly expected that deep PDT will be developed as a versatile, depth/oxygen-independent and minimally invasive strategy for treating a variety of malignant tumours at deep locations.

1,087 citations