scispace - formally typeset
Search or ask a question
Author

Agnieszka Kołodziejczak-Radzimska

Bio: Agnieszka Kołodziejczak-Radzimska is an academic researcher from Poznań University of Technology. The author has contributed to research in topics: Immobilized enzyme & Lipase. The author has an hindex of 10, co-authored 27 publications receiving 1735 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The most important methods of preparation of ZnO divided into metallurgical and chemical methods are presented and possible applications in various branches of industry: rubber, pharmaceutical, cosmetics, textile, electronic and electrotechnology, photocatalysis were introduced.
Abstract: Zinc oxide can be called a multifunctional material thanks to its unique physical and chemical properties. The first part of this paper presents the most important methods of preparation of ZnO divided into metallurgical and chemical methods. The mechanochemical process, controlled precipitation, sol-gel method, solvothermal and hydrothermal method, method using emulsion and microemulsion enviroment and other methods of obtaining zinc oxide were classified as chemical methods. In the next part of this review, the modification methods of ZnO were characterized. The modification with organic (carboxylic acid, silanes) and inroganic (metal oxides) compounds, and polymer matrices were mainly described. Finally, we present possible applications in various branches of industry: rubber, pharmaceutical, cosmetics, textile, electronic and electrotechnology, photocatalysis were introduced. This review provides useful information for specialist dealings with zinc oxide.

1,790 citations

Journal ArticleDOI
TL;DR: In this article, modifications of the ZnO precipitation process, such as changing the precipitating agent, composition of substrates, and the rate of substrate dosing, were obtained.
Abstract: Zinc oxide was obtained by precipitation in an emulsion system with zinc acetate used as a precursor of ZnO and potassium hydroxide or sodium hydroxide as a precipitating agent. The cyclohexane, as an organic phase, and a nonionic surfactant mixture were also used for preparation of the emulsion. By applying modifications of the ZnO precipitation process, such as changing the precipitating agent, composition of substrates, and the rate of substrate dosing, some interesting structures of ZnO particles were obtained. The morphology of the modified samples was analysed based on SEM (scanning electron microscope) and TEM (transmission electron microscope) images. Moreover the samples were characterised by determination of their dispersive properties using the noninvasive back scattering method (NIBS), adsorption parameters (BET), and crystalline structure (XRD). Thermogravimetric analysis (TG) as well as infrared spectrophotometry (FT-IR) was also applied. For selected samples their electrical properties (dielectric permittivity and electric conductivity) were also measured. The zinc oxide obtained consisted of particles in the shapes of solids, ellipsoids, rods, and flakes, with size ranging from 164 to 2670nm and showed well-developed surface area with values as high as 20m2/g.

120 citations

Journal ArticleDOI
TL;DR: The immobilization process, using a cheap, non-toxic matrix of natural origin, leads to systems with potential applications in wastewater remediation processes and in biosensors.
Abstract: Innovative materials were made via the combination of chitin and lignin, and the immobilization of lipase from Aspergillus niger. Analysis by techniques including FTIR, XPS and 13C CP MAS NMR confirmed the effective immobilization of the enzyme on the surface of the composite support. The electrokinetic properties of the resulting systems were also determined. Results obtained from elemental analysis and by the Bradford method enabled the determination of optimum parameters for the immobilization process. Based on the hydrolysis reaction of para-nitrophenyl palmitate, a determination was made of the catalytic activity, thermal and pH stability, and reusability. The systems with immobilized enzymes were found to have a hydrolytic activity of 5.72 mU, and increased thermal and pH stability compared with the native lipase. The products were also shown to retain approximately 80% of their initial catalytic activity, even after 20 reaction cycles. The immobilization process, using a cheap, non-toxic matrix of natural origin, leads to systems with potential applications in wastewater remediation processes and in biosensors.

66 citations

Journal ArticleDOI
TL;DR: In this article, a characterisation of hybrid pigments obtained via adsorption of selected food dyes onto inorganic oxides based on anatase titanium dioxide was conducted for dye concentrations varying from 10 to 50 µm/dm3.

33 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of enzyme adsorption on Stöber silica matrix using sol-gel method was studied. And the authors demonstrated the effectiveness of the enzyme immobilization and thus the usefulness of the method was demonstrated by a number of physicochemical analysis techniques including Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), thermogravimetric analysis (TG), porous structure of the support and the products after immobilization from the enzyme solution with various concentration at different times.
Abstract: Abstract The immobilization of Amano Lipase A from Aspergillus niger by adsorption onto Stöber silica matrix obtained by sol-gel method was studied. The effectiveness of the enzyme immobilization and thus the usefulness of the method was demonstrated by a number of physicochemical analysis techniques including Fourier Transform Infrared Spectroscopy (FT-IR), elemental analysis (EA), thermogravimetric analysis (TG), porous structure of the support and the products after immobilization from the enzyme solution with various concentration at different times. The analysis of the process’ kinetics allowed the determination of the sorption parameters of the support and optimization of the process. The optimum initial concentration of the enzyme solution was found to be 5 mg mL-1, while the optimum time of the immobilization was 120 minutes. These values of the variable parameters of the process were obtained by as ensuring the immobilization of the largest possible amount of the biocatalyst at Graphical Abstract

27 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The most important methods of preparation of ZnO divided into metallurgical and chemical methods are presented and possible applications in various branches of industry: rubber, pharmaceutical, cosmetics, textile, electronic and electrotechnology, photocatalysis were introduced.
Abstract: Zinc oxide can be called a multifunctional material thanks to its unique physical and chemical properties. The first part of this paper presents the most important methods of preparation of ZnO divided into metallurgical and chemical methods. The mechanochemical process, controlled precipitation, sol-gel method, solvothermal and hydrothermal method, method using emulsion and microemulsion enviroment and other methods of obtaining zinc oxide were classified as chemical methods. In the next part of this review, the modification methods of ZnO were characterized. The modification with organic (carboxylic acid, silanes) and inroganic (metal oxides) compounds, and polymer matrices were mainly described. Finally, we present possible applications in various branches of industry: rubber, pharmaceutical, cosmetics, textile, electronic and electrotechnology, photocatalysis were introduced. This review provides useful information for specialist dealings with zinc oxide.

1,790 citations

Journal ArticleDOI
TL;DR: The synthesis and recent advances of ZnO NPs in the biomedical fields are summarized, which will be helpful for facilitating their future research progress and focusing on biomedical fields.
Abstract: Zinc oxide nanoparticles (ZnO NPs) are used in an increasing number of industrial products such as rubber, paint, coating, and cosmetics In the past two decades, ZnO NPs have become one of the most popular metal oxide nanoparticles in biological applications due to their excellent biocompatibility, economic, and low toxicity ZnO NPs have emerged a promising potential in biomedicine, especially in the fields of anticancer and antibacterial fields, which are involved with their potent ability to trigger excess reactive oxygen species (ROS) production, release zinc ions, and induce cell apoptosis In addition, zinc is well known to keep the structural integrity of insulin So, ZnO NPs also have been effectively developed for antidiabetic treatment Moreover, ZnO NPs show excellent luminescent properties and have turned them into one of the main candidates for bioimaging Here, we summarize the synthesis and recent advances of ZnO NPs in the biomedical fields, which will be helpful for facilitating their future research progress and focusing on biomedical fields

645 citations

Journal ArticleDOI
TL;DR: In this article, the performance of zinc oxide (ZnO) has been improved by tailoring its surface-bulk structure and altering its photogenerated charge transfer pathways with an intention to inhibit the surfacebulk charge carrier recombination.
Abstract: As an alternative to the gold standard TiO2 photocatalyst, the use of zinc oxide (ZnO) as a robust candidate for wastewater treatment is widespread due to its similarity in charge carrier dynamics upon bandgap excitation and the generation of reactive oxygen species in aqueous suspensions with TiO2. However, the large bandgap of ZnO, the massive charge carrier recombination, and the photoinduced corrosion–dissolution at extreme pH conditions, together with the formation of inert Zn(OH)2 during photocatalytic reactions act as barriers for its extensive applicability. To this end, research has been intensified to improve the performance of ZnO by tailoring its surface-bulk structure and by altering its photogenerated charge transfer pathways with an intention to inhibit the surface-bulk charge carrier recombination. For the first time, the several strategies, such as tailoring the intrinsic defects, surface modification with organic compounds, doping with foreign ions, noble metal deposition, heterostructuring with other semiconductors and modification with carbon nanostructures, which have been successfully employed to improve the photoactivity and stability of ZnO are critically reviewed. Such modifications enhance the charge separation and facilitate the generation of reactive oxygenated free radicals, and also the interaction with the pollutant molecules. The synthetic route to obtain hierarchical nanostructured morphologies and study their impact on the photocatalytic performance is explained by considering the morphological influence and the defect-rich chemistry of ZnO. Finally, the crystal facet engineering of polar and non-polar facets and their relevance in photocatalysis is outlined. It is with this intention that the present review directs the further design, tailoring and tuning of the physico-chemical and optoelectronic properties of ZnO for better applications, ranging from photocatalysis to photovoltaics.

643 citations

Journal ArticleDOI
TL;DR: Their added-value in the development of alternative, more effective antibiotics against multi-resistant Gram-negative bacteria has been highlighted and their production methods, physicochemical characterization, and pharmacokinetics are reviewed.
Abstract: Metal-based nanoparticles have been extensively investigated for a set of biomedical applications. According to the World Health Organization, in addition to their reduced size and selectivity for bacteria, metal-based nanoparticles have also proved to be effective against pathogens listed as a priority. Metal-based nanoparticles are known to have non-specific bacterial toxicity mechanisms (they do not bind to a specific receptor in the bacterial cell) which not only makes the development of resistance by bacteria difficult, but also broadens the spectrum of antibacterial activity. As a result, a large majority of metal-based nanoparticles efficacy studies performed so far have shown promising results in both Gram-positive and Gram-negative bacteria. The aim of this review has been a comprehensive discussion of the state of the art on the use of the most relevant types of metal nanoparticles employed as antimicrobial agents. A special emphasis to silver nanoparticles is given, while others (e.g., gold, zinc oxide, copper, and copper oxide nanoparticles) commonly used in antibiotherapy are also reviewed. The novelty of this review relies on the comparative discussion of the different types of metal nanoparticles, their production methods, physicochemical characterization, and pharmacokinetics together with the toxicological risk encountered with the use of different types of nanoparticles as antimicrobial agents. Their added-value in the development of alternative, more effective antibiotics against multi-resistant Gram-negative bacteria has been highlighted.

629 citations

Journal ArticleDOI
TL;DR: A general overview of the characteristics and properties of the materials applied for enzyme immobilization can be found in this article, where support materials are divided into two main groups, called Classic and New materials.
Abstract: In recent years, enzyme immobilization has been presented as a powerful tool for the improvement of enzyme properties such as stability and reusability. However, the type of support material used plays a crucial role in the immobilization process due to the strong effect of these materials on the properties of the produced catalytic system. A large variety of inorganic and organic as well as hybrid and composite materials may be used as stable and efficient supports for biocatalysts. This review provides a general overview of the characteristics and properties of the materials applied for enzyme immobilization. For the purposes of this literature study, support materials are divided into two main groups, called Classic and New materials. The review will be useful in selection of appropriate support materials with tailored properties for the production of highly effective biocatalytic systems for use in various processes.

580 citations