scispace - formally typeset
Search or ask a question
Author

Agnieszka M. Kierzkowska

Bio: Agnieszka M. Kierzkowska is an academic researcher from ETH Zurich. The author has contributed to research in topics: Sorbent & Chemical looping combustion. The author has an hindex of 20, co-authored 39 publications receiving 1508 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Current understanding of fundamental aspects of the cyclic carbonation-calcination reactions of CaO such as its reversibility and kinetics are reviewed, and recent attempts to develop synthetic, CaO-based sorbents that possess high and cyclically stable CO2 uptakes are presented.
Abstract: The enormous anthropogenic emission of the greenhouse gas CO2 is most likely the main reason for climate change. Considering the continuing and indeed growing utilisation of fossil fuels for electricity generation and transportation purposes, development and implementation of processes that avoid the associated emissions of CO2 are urgently needed. CO2 capture and storage, commonly termed CCS, would be a possible mid-term solution to reduce the emissions of CO2 into the atmosphere. However, the costs associated with the currently available CO2 capture technology, that is, amine scrubbing, are prohibitively high, thus making the development of new CO2 sorbents a highly important research challenge. Indeed, CaO, readily obtained through the calcination of naturally occurring limestone, has been proposed as an alternative CO2 sorbent that could substantially reduce the costs of CO2 capture. However, one of the major drawbacks of using CaO derived from natural sources is its rapidly decreasing CO2 uptake capacity with repeated carbonation-calcination reactions. Here, we review the current understanding of fundamental aspects of the cyclic carbonation-calcination reactions of CaO such as its reversibility and kinetics. Subsequently, recent attempts to develop synthetic, CaO-based sorbents that possess high and cyclically stable CO2 uptakes are presented.

283 citations

Journal ArticleDOI
TL;DR: This work expands the compositional space of the MXene family by introducing a material with site-isolated cobalt centers embedded in the stable matrix of Mo2CTx, on par with the best performing non-noble metal-based HER catalysts.
Abstract: Two-dimensional (2D) carbides, nitrides, and carbonitrides known as MXenes are emerging materials with a wealth of useful applications. However, the range of metals capable of forming stable MXenes...

213 citations

Journal ArticleDOI
TL;DR: A facile one-pot synthesis approach to yield highly effective, MgO-stabilized, CaO-based CO2 sorbents featuring highly porous multishelled morphologies, identified as an essential feature to yield a high-performance sorbent.
Abstract: Calcium looping, a CO2 capture technique, may offer a mid-term if not near-term solution to mitigate climate change, triggered by the yet increasing anthropogenic CO2 emissions. A key requirement for the economic operation of calcium looping is the availability of highly effective CaO-based CO2 sorbents. Here we report a facile synthesis route that yields hollow, MgO-stabilized, CaO microspheres featuring highly porous multishelled morphologies. As a thermal stabilizer, MgO minimized the sintering-induced decay of the sorbents’ CO2 capacity and ensured a stable CO2 uptake over multiple operation cycles. Detailed electron microscopy-based analyses confirm a compositional homogeneity which is identified, together with the characteristics of its porous structure, as an essential feature to yield a high-performance sorbent. After 30 cycles of repeated CO2 capture and sorbent regeneration, the best performing material requires as little as 11 wt.% MgO for structural stabilization and exceeds the CO2 uptake of the limestone-derived reference material by ~500%.

144 citations

Journal ArticleDOI
TL;DR: The favorable CO2 capture characteristics of the synthetic CO2 sorbent were attributed to the uniform dispersion of CaO on a stable nanosized mayenite framework, thus retarding thermal sintering of the material.
Abstract: Sorbent-enhanced steam methane reforming (SE-SMR) is an emerging technology for the production of high-purity hydrogen from hydrocarbons with in situ CO2 capture. Here, SE-SMR was studied using a mixture containing a Ni-hydrotalcite-derived catalyst and a synthetic, Ca-based, calcium aluminate supported CO2 sorbent. The fresh and cycled materials were characterized using N2 physisorption, X-ray diffraction, and scanning and transmission electron microscopy. The combination of a Ni-hydrotalcite catalyst and the synthetic CO2 sorbent produced a stream of high-purity hydrogen, that is, 99 vol % (H2O- and N2-free basis). The CaO conversion of the synthetic CO2 sorbent was 0.58 mol CO2/mol CaO after 10 cycles, which was more than double the value achieved by limestone. The favorable CO2 capture characteristics of the synthetic CO2 sorbent were attributed to the uniform dispersion of CaO on a stable nanosized mayenite framework, thus retarding thermal sintering of the material. On the other hand, the cycled limestone lost its nanostructured morphology completely over 10 SE-SMR cycles due to its intrinsic lack of a support component.

118 citations

Journal ArticleDOI
TL;DR: A template-assisted hydrothermal approach to develop CaO-based sorbents exhibiting a very high and cyclically stable CO2 uptake is exploited, thus maximizing the fraction of CO2 -capture-active CaO.
Abstract: CO2 capture and storage is a promising concept to reduce anthropogenic CO2 emissions. The most established technology for capturing CO2 relies on amine scrubbing that is, however, associated with high costs. Technoeconomic studies show that using CaO as a high-temperature CO2 sorbent can significantly reduce the costs of CO2 capture. A serious disadvantage of CaO derived from earth-abundant precursors, e.g., limestone, is the rapid, sintering-induced decay of its cyclic CO2 uptake. Here, a template-assisted hydrothermal approach to develop CaO-based sorbents exhibiting a very high and cyclically stable CO2 uptake is exploited. The morphological characteristics of these sorbents, i.e., a porous shell comprised of CaO nanoparticles coated by a thin layer of Al2O3 (<3 nm) containing a central void, ensure (i) minimal diffusion limitations, (ii) space to accompany the substantial volumetric changes during CO2 capture and release, and (iii) a minimal quantity of Al2O3 for structural stabilization, thus maximizing the fraction of CO2-capture-active CaO.

111 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the leading CO2 capture technologies, available in the short and long term, and their technological maturity, before discussing CO2 transport and storage, as well as the economic and legal aspects of CCS.
Abstract: In recent years, Carbon Capture and Storage (Sequestration) (CCS) has been proposed as a potential method to allow the continued use of fossil-fuelled power stations whilst preventing emissions of CO2 from reaching the atmosphere. Gas, coal (and biomass)-fired power stations can respond to changes in demand more readily than many other sources of electricity production, hence the importance of retaining them as an option in the energy mix. Here, we review the leading CO2 capture technologies, available in the short and long term, and their technological maturity, before discussing CO2 transport and storage. Current pilot plants and demonstrations are highlighted, as is the importance of optimising the CCS system as a whole. Other topics briefly discussed include the viability of both the capture of CO2 from the air and CO2 reutilisation as climate change mitigation strategies. Finally, we discuss the economic and legal aspects of CCS.

1,752 citations

Journal ArticleDOI
TL;DR: In this article, the authors organize the CO2 sorbents according to their working temperatures by classifying them as such: (1) low-temperature ( 400 °C), since the sorption capacity, kinetics, recycling stability and cost are important parameters when evaluating a sorbent.
Abstract: Carbon dioxide (CO2) capture using solid sorbents has been recognized as a very promising technology that has attracted intense attention from both academic and industrial fields in the last decade. It is astonishing that around 2000 papers have been published from 2011 to 2014 alone, which is less than three years after our first review paper in this journal on solid CO2 sorbents was published. In this short period, much progress has been made and the major research focus has more or less changed. Therefore, we feel that it is necessary to give a timely update on solid CO2 capture materials, although we still have to keep some important literature results published in the past years so as to keep the good continuity. We believe this work will benefit researchers working in both academic and industrial areas. In this paper, we still organize the CO2 sorbents according to their working temperatures by classifying them as such: (1) low-temperature ( 400 °C). Since the sorption capacity, kinetics, recycling stability and cost are important parameters when evaluating a sorbent, these features will be carefully considered and discussed. In addition, due to the huge amounts of cost-effective CO2 sorbents demanded and the importance of waste resources, solid CO2 sorbents prepared from waste resources and their performance are reviewed. Finally, the techno-economic assessments of various CO2 sorbents and technologies in real applications are briefly discussed.

901 citations

Journal ArticleDOI
TL;DR: This review will cover amine-based technology developed and published in and after the year 2013, which are well-known for their reversible reactions with CO2, which make them ideal for the separation of CO2 from many CO2-containing gases, including flue gas.
Abstract: It is generally accepted by the scientific community that anthropogenic CO2 emissions are leading to global climate change, notably an increase in global temperatures commonly referred to as global warming. The primary source of anthropogenic CO2 emissions is the combustion of fossil fuels for energy. As society’s demand for energy increases and more CO2 is produced, it becomes imperative to decrease the amount emitted to the atmosphere. One promising approach to do this is to capture CO2 at the effluent of the combustion site, namely, power plants, in a process called postcombustion CO2 capture. Technologies to achieve this are heavily researched due in large part to the intuitive nature of removing CO2 from the stack gas and the ease in retrofitting existing CO2 sources with these technologies. As such, several reviews have been written on postcombustion CO2 capture. However, it is a fast-developing field, and the most recent review papers already do not include the state-of-the-art research. Notable am...

617 citations

Journal ArticleDOI
TL;DR: This work critically summarized and comprehensively reviewed the characteristics and performance of both liquid and solid CO2 adsorbents with possible schemes for the improvement of their CO2 capture ability and advances in CO2 utilization.
Abstract: Dramatically increased CO2 concentration from several point sources is perceived to cause severe greenhouse effect towards the serious ongoing global warming with associated climate destabilization, inducing undesirable natural calamities, melting of glaciers, and extreme weather patterns. CO2 capture and utilization (CCU) has received tremendous attention due to its significant role in intensifying global warming. Considering the lack of a timely review on the state-of-the-art progress of promising CCU techniques, developing an appropriate and prompt summary of such advanced techniques with a comprehensive understanding is necessary. Thus, it is imperative to provide a timely review, given the fast growth of sophisticated CO2 capture and utilization materials and their implementation. In this work, we critically summarized and comprehensively reviewed the characteristics and performance of both liquid and solid CO2 adsorbents with possible schemes for the improvement of their CO2 capture ability and advances in CO2 utilization. Their industrial applications in pre- and post-combustion CO2 capture as well as utilization were systematically discussed and compared. With our great effort, this review would be of significant importance for academic researchers for obtaining an overall understanding of the current developments and future trends of CCU. This work is bound to benefit researchers in fields relating to CCU and facilitate the progress of significant breakthroughs in both fundamental research and commercial applications to deliver perspective views for future scientific and industrial advances in CCU.

453 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the performance and environmental issues of CLC of solid fuels in 19 pilot plants and evaluated the effect of the main variables affecting fuel conversion, CO2 capture rate, and combustion efficiency obtained in different CLC units.

420 citations