scispace - formally typeset
Search or ask a question
Author

Ahmad Al Atrouni

Bio: Ahmad Al Atrouni is an academic researcher from Lebanese University. The author has contributed to research in topics: Acinetobacter baumannii & Acinetobacter. The author has an hindex of 5, co-authored 6 publications receiving 205 citations. Previous affiliations of Ahmad Al Atrouni include Centre national de la recherche scientifique & University of Angers.

Papers
More filters
Journal ArticleDOI
TL;DR: The present review summarizes the recent data about the natural reservoir of non-baumannii Acinetobacter including the novel species that have been described for the first time from environmental sources and reported during the last years.
Abstract: Acinetobacter spp. are ubiquitous gram negative and non-fermenting coccobacilli that have the ability to occupy several ecological niches including environment, animals and human. Among the different species, Acinetobacter baumannii has evolved as global pathogen causing wide range of infection. Since the implementation of molecular techniques, the habitat and the role of non-baumannii Acinetobacter in human infection have been elucidated. In addition, several new species have been described. In the present review, we summarize the recent data about the natural reservoir of non-baumannii Acinetobacter including the novel species that have been described for the first time from environmental sources and reported during the last years.

150 citations

Journal ArticleDOI
TL;DR: This study highlights the wide dissemination of highly related OXA-23-producing carbapenem-resistant A. baumannii belonging to the international clone II in Lebanon and appropriate infection control measures are recommended in order to control the geographical spread of this clone in this country.

59 citations

Journal ArticleDOI
TL;DR: This work aims to review the available data on the mechanisms underlying antimicrobial resistance in A. baumannii, with a special focus on the molecular epidemiology of this species in Lebanon.
Abstract: Acinetobacter baumannii is an opportunistic bacterium involved in several types of infection with high mortality and morbidity, especially in intensive care units. Treatment of these infections remains a challenge due to the worldwide emergence of broad-spectrum resistance to many antibiotics. Following the implementation of molecular techniques to study A. baumannii outbreaks, it has been shown that they are mainly caused by specific clones such as international clones I, II and III. The present work aims to review the available data on the mechanisms underlying antimicrobial resistance in A. baumannii, with a special focus on the molecular epidemiology of this species in Lebanon.

29 citations

Journal ArticleDOI
TL;DR: This is the largest epidemiological study investigating the epidemiology of Acinetobacter spp.
Abstract: Aim: To investigate the extrahospital reservoirs of Acinetobacter spp. in Lebanon. Materials & methods: Two thousand three hundred and sixty-one samples from different ecological niches were analyzed by culture methods. Species identification was confirmed by rpoB-gene sequencing. Multilocus sequence typing was used to characterize the Acinetobacter baumannii clones. Results & conclusion: Acinetobacter spp. were detected in 14% of environmental samples and 8% of food samples. Furthermore, 9% of animals and 3.4% of humans were colonized. Non-baumannii Acinetobacter were the most common species isolated and newly susceptible A. baumannii clones were detected. Interestingly, 21 isolates were not identified at the species level and were considered as putative novel species. To our knowledge, this is the largest epidemiological study investigating the epidemiology of Acinetobacter spp. outside hospitals.

15 citations

Journal ArticleDOI
TL;DR: The first detection of an Acinetobacter calcoaceticus isolate from vegetables in Lebanon carrying the blaOxa-72 gene is reported, showing that the Lebanese environment may constitute a potential reservoir for this antibiotic resistance gene.
Abstract: Emergence of carbapenem-resistant Acinetobacter spp. has been increasingly reported worldwide. We report here the first detection of an Acinetobacter calcoaceticus isolate from vegetables in Lebanon carrying the blaOxa-72 gene. These findings show that the Lebanese environment may constitute a potential reservoir for this antibiotic resistance gene.

12 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Given its high rate of antibiotic resistance and abysmal outcomes (up to 70% mortality rate from infections caused by XDR strains in some case series), new preventative and therapeutic options for Acinetobacter spp.
Abstract: Acinetobacter is a complex genus, and historically, there has been confusion about the existence of multiple species. The species commonly cause nosocomial infections, predominantly aspiration pneumonia and catheter-associated bacteremia, but can also cause soft tissue and urinary tract infections. Community-acquired infections by Acinetobacter spp. are increasingly reported. Transmission of Acinetobacter and subsequent disease is facilitated by the organism's environmental tenacity, resistance to desiccation, and evasion of host immunity. The virulence properties demonstrated by Acinetobacter spp. primarily stem from evasion of rapid clearance by the innate immune system, effectively enabling high bacterial density that triggers lipopolysaccharide (LPS)-Toll-like receptor 4 (TLR4)-mediated sepsis. Capsular polysaccharide is a critical virulence factor that enables immune evasion, while LPS triggers septic shock. However, the primary driver of clinical outcome is antibiotic resistance. Administration of initially effective therapy is key to improving survival, reducing 30-day mortality threefold. Regrettably, due to the high frequency of this organism having an extreme drug resistance (XDR) phenotype, early initiation of effective therapy is a major clinical challenge. Given its high rate of antibiotic resistance and abysmal outcomes (up to 70% mortality rate from infections caused by XDR strains in some case series), new preventative and therapeutic options for Acinetobacter spp. are desperately needed.

618 citations

Journal ArticleDOI
TL;DR: Current studies on the virulence factors that contribute to A. baumannii pathogenesis are summarized and Mechanisms of antibiotic resistance of this organism, including acquirement of β-lactamases, up-regulation of multidrug efflux pumps, modification of aminoglycosides, permeability defects, and alteration of target sites are discussed.
Abstract: Acinetobacter baumannii is undoubtedly one of the most successful pathogens responsible for hospital-acquired nosocomial infections in the modern healthcare system. Due to the prevalence of infections and outbreaks caused by multi-drug resistant A. baumannii, few antibiotics are effective for treating infections caused by this pathogen. To overcome this problem, knowledge of the pathogenesis and antibiotic resistance mechanisms of A. baumannii is important. In this review, we summarize current studies on the virulence factors that contribute to A. baumannii pathogenesis, including porins, capsular polysaccharides, lipopolysaccharides, phospholipases, outer membrane vesicles, metal acquisition systems, and protein secretion systems. Mechanisms of antibiotic resistance of this organism, including acquirement of -lactamases, up-regulation of multidrug efflux pumps, modification of aminoglycosides, permeability defects, and alteration of target sites, are also discussed. Lastly, novel prospective treatment options for infections caused by multi-drug resistant A. baumannii are summarized.

572 citations

Journal ArticleDOI
TL;DR: Recommendations for prevention and infection control measures as well as proposals for various target groups to tackle the threats posed by Gram-negative bacteria and prevent the spread and emergence of new antibiotic resistances are given.
Abstract: In the past years infections caused by multidrug-resistant Gram-negative bacteria have dramatically increased in all parts of the world. This consensus paper is based on presentations, subsequent discussions and an appraisal of current literature by a panel of international experts invited by the Rudolf Schulke Stiftung, Hamburg. It deals with the epidemiology and the inherent properties of Gram-negative bacteria, elucidating the patterns of the spread of antibiotic resistance, highlighting reservoirs as well as transmission pathways and risk factors for infection, mortality, treatment and prevention options as well as the consequences of their prevalence in livestock. Following a global, One Health approach and based on the evaluation of the existing knowledge about these pathogens, this paper gives recommendations for prevention and infection control measures as well as proposals for various target groups to tackle the threats posed by Gram-negative bacteria and prevent the spread and emergence of new antibiotic resistances.

294 citations

Journal ArticleDOI
TL;DR: This review discusses Acinetobacter baumannii's taxonomy, pathogenesis, current treatment options, global resistance rates, mechanisms of its resistance against various groups of antimicrobials, and future therapeutics.
Abstract: Acinetobacter baumannii, once considered a low-category pathogen, has emerged as an obstinate infectious agent. The scientific community is paying more attention to this pathogen due to its stubbornness to last resort antimicrobials, including carbapenems, colistin, and tigecycline, its high prevalence of infections in the hospital setting, and significantly increased rate of community-acquired infections by this organism over the past decade. It has given the fear of pre-antibiotic era to the world. To further enhance our understanding about this pathogen, in this review, we discuss its taxonomy, pathogenesis, current treatment options, global resistance rates, mechanisms of its resistance against various groups of antimicrobials, and future therapeutics.

183 citations

Journal ArticleDOI
01 Oct 2019
TL;DR: It is indicated that ST2, ST1, ST79 and ST25 account for over 71 % of all genomes sequenced to date, with ST2 by far the most dominant type and oxa23 the most widespread carbapenem resistance determinant globally, regardless of clonal type.
Abstract: Acinetobacter baumannii is a nosocomial pathogen that has emerged as a global threat because of high levels of resistance to many antibiotics, particularly those considered to be last-resort antibiotics, such as carbapenems. Although alterations in the efflux pump and outer membrane proteins can cause carbapenem resistance, the main mechanism is the acquisition of carbapenem-hydrolyzing oxacillinase-encoding genes. Of these, oxa23 is by far the most widespread in most countries, while oxa24 and oxa58 appear to be dominant in specific regions. Historically, much of the global spread of carbapenem resistance has been due to the dissemination of two major clones, known as global clones 1 and 2, although new lineages are now common in some parts of the world. The analysis of all publicly available genome sequences performed here indicates that ST2, ST1, ST79 and ST25 account for over 71 % of all genomes sequenced to date, with ST2 by far the most dominant type and oxa23 the most widespread carbapenem resistance determinant globally, regardless of clonal type. Whilst this highlights the global spread of ST1 and ST2, and the dominance of oxa23 in both clones, it could also be a result of preferential selection of carbapenem-resistant strains, which mainly belong to the two major clones. Furthermore, ~70 % of the sequenced strains have been isolated from five countries, namely the USA, PR China, Australia, Thailand and Pakistan, with only a limited number from other countries. These genomes are a vital resource, but it is currently difficult to draw an accurate global picture of this important superbug, highlighting the need for more comprehensive genome sequence data and genomic analysis.

173 citations