scispace - formally typeset
Search or ask a question
Author

Ahmad Besaratinia

Bio: Ahmad Besaratinia is an academic researcher from University of Southern California. The author has contributed to research in topics: DNA damage & DNA methylation. The author has an hindex of 30, co-authored 71 publications receiving 3402 citations. Previous affiliations of Ahmad Besaratinia include German Cancer Research Center & City of Hope National Medical Center.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that CPDs (rather than 6-4 photoproducts or other lesions) are responsible for the great majority of UVB-induced mutations and the role of DNA damage-tolerant DNA polymerases in UV lesion bypass and mutagenesis is discussed.
Abstract: The different ultraviolet (UV) wavelength components, UVA (320-400 nm), UVB (280-320 nm), and UVC (200-280 nm), have distinct mutagenic properties. A hallmark of UVC and UVB mutagenesis is the high frequency of transition mutations at dipyrimidine sequences containing cytosine. In human skin cancers, about 35% of all mutations in the p53 gene are transitions at dipyrimidines within the sequence 5'-TCG and 5'-CCG, and these are localized at several mutational hotspots. Since 5'-CG sequences are methylated along the p53 coding sequence in human cells, these mutations may be derived from sunlight-induced pyrimidine dimers forming at sequences that contain 5-methylcytosine. Cyclobutane pyrimidine dimers (CPDs) form preferentially at dipyrimidines containing 5-methylcytosine when cells are irradiated with UVB or sunlight. In order to define the contribution of 5-methylcytosine to sunlight-induced mutations, the lacI and cII transgenes in mouse fibroblasts were used as mutational targets. After 254 nm UVC irradiation, only 6-9% of the base substitutions were at dipyrimidines containing 5-methylcytosine. However, 24-32% of the solar light-induced mutations were at dipyrimidines that contain 5-methylcytosine and most of these mutations were transitions. Thus, CPDs forming preferentially at dipyrimidines with 5-methylcytosine are responsible for a considerable fraction of the mutations induced by sunlight in mammalian cells. Using mouse cell lines harboring photoproduct-specific photolyases and mutational reporter genes, we showed that CPDs (rather than 6-4 photoproducts or other lesions) are responsible for the great majority of UVB-induced mutations. An important component of UVB mutagenesis is the deamination of cytosine and 5-methylcytosine within CPDs. The mutational specificity of long-wave UVA (340-400 nm) is distinct from that of the shorter wavelength UV and is characterized mainly by G to T transversions presumably arising through mechanisms involving oxidized DNA bases. We also discuss the role of DNA damage-tolerant DNA polymerases in UV lesion bypass and mutagenesis.

722 citations

Journal ArticleDOI
TL;DR: The data implicate the CPD as the DNA lesion most strongly involved in human cancers induced by sunlight, including non-melanoma and melanoma skin cancers.
Abstract: Ultraviolet (UV) irradiation from the sun has been epidemiologically and mechanistically linked to skin cancer, a spectrum of diseases of rising incidence in many human populations. Both non-melanoma and melanoma skin cancers are associated with sunlight exposure. In this review, we discuss the UV wavelength-dependent formation of the major UV-induced DNA damage products, their repair and mutagenicity and their potential involvement in sunlight-associated skin cancers. We emphasize the major role played by the cyclobutane pyrimidine dimers (CPDs) in skin cancer mutations relative to that of (6–4) photoproducts and oxidative DNA damage. Collectively, the data implicate the CPD as the DNA lesion most strongly involved in human cancers induced by sunlight.

346 citations

Journal ArticleDOI
TL;DR: The present review is a synopsis of research on the known and hypothetical modes of action of acrylamide of relevance for carcinogenesis with special emphasis on DNA adduct-targeted mutagenesis.
Abstract: The fact that acrylamide, a proven rodent carcinogen, is present in significant quantities (up to several mg/kg of foodstuff) in a wide range of commonly consumed human foods is alarming. Attempts to determine a possible involvement of dietary acrylamide in human cancers have not been conclusive, however. To resolve the carcinogenicity of acrylamide to humans, the as yet unknown mechanism of action of acrylamide needs to be unraveled. The present review is a synopsis of research on the known and hypothetical modes of action of acrylamide of relevance for carcinogenesis. Both genotoxic and non-genotoxic modes of action of acrylamide are discussed with special emphasis on DNA adduct-targeted mutagenesis. Mechanistic data are presented from various experimental systems including in vitro experiments and in vivo rodent and human studies with special focus on mouse models. Human exposure data, including estimates of daily intake of dietary acrylamide in different populations and the corresponding cancer risk assessments are provided. The significant gaps in knowledge, which currently preclude a more definitive evaluation of human cancer risk due to exposure to dietary acrylamide, are highlighted. Future directions for research on acrylamide and cancer are outlined, and potential challenges are underscored.

204 citations

Journal ArticleDOI
TL;DR: The mutagenicity of acrylamide in human and mouse cells is based on the capacity of its epoxide metabolite glycidamide to form DNA adducts.
Abstract: Background: Acrylamide, a known rodent carcinogen, is found in the human diet. However, the mechanism by which acrylamide exerts its carcinogenic effects remains unclear. Methods: Normal human bronchial epithelial cells and Big Blue mouse embryonic fibroblasts that carry a λ phage cII transgene were treated in vitro with acrylamide, its primary epoxide metabolite glycidamide, or water (control) and then subjected to terminal transferase-dependent polymerase chain reaction to map the formation of DNA adducts within the human gene encoding p53 (TP53) and the cII transgene. The frequency and spectrum of glycidamide-induced mutations in cII were examined by using a λ phage-based mutation detection system and DNA sequence analysis, respectively. All statistical tests were two-sided. Results: Acrylamide and glycidamide formed DNA adducts at similar specific locations within TP53 and cII, and DNA adduct formation was more pronounced after glycidamide treatment than after acrylamide treatment at all doses tested. Acrylamide-DNA adduct formation was saturable, whereas the formation of most glycidamide-DNA adducts was dose-dependent. Glycidamide treatment dose-dependently increased the frequency of cII mutations relative to control treatment (P<.001). Glycidamide was more mutagenic than acrylamide at any given dose. The spectrum of glycidamide-induced cII mutations was statistically significantly different from the spectrum of spontaneously occurring mutations in the control-treated cells (P =.038). Compared with spontaneous mutations in control cells, cells treated with glycidamide or acrylamide had more A→G transitions and G→C transversions and glycidamide-treated cells had more GET transversions (P<.001). Conclusion: The mutagenicity ol acrylamide in human and mouse cells is based on the capacity of its epoxide metabolite glycidamide to form DNA adducts.

181 citations

Journal ArticleDOI
TL;DR: Evidence that can be used to reconstruct the etiology of human cancers from mutations found in tumors is summarized to produce mutational spectra similar to those in TP53 but have unveiled a previously unrecognized common G to C transversion mutation signature at GpA dinucleotides in breast cancers and several other cancers.
Abstract: The purpose of this review is to summarize the evidence that can be used to reconstruct the etiology of human cancers from mutations found in tumors. Mutational spectra of the tumor suppressor gene p53 (TP53) are tumor specific. In several cases, these mutational spectra can be linked to exogenous carcinogens, most notably for sunlight-associated skin cancers, tobacco-associated lung cancers, and aristolochic acid-related urothelial tumors. In the TP53 gene, methylated CpG dinucleotides are sequences selectively targeted by endogenous and exogenous mutagenic processes. Recent high-throughput sequencing efforts analyzing a large number of genes in cancer genomes have so far, for the most part, produced mutational spectra similar to those in TP53 but have unveiled a previously unrecognized common G to C transversion mutation signature at GpA dinucleotides in breast cancers and several other cancers. Unraveling the origin of these G to C mutations will be of importance for understanding cancer etiology.

177 citations


Cited by
More filters
Journal ArticleDOI
Ludmil B. Alexandrov1, Serena Nik-Zainal2, Serena Nik-Zainal3, David C. Wedge1, Samuel Aparicio4, Sam Behjati1, Sam Behjati5, Andrew V. Biankin, Graham R. Bignell1, Niccolo Bolli1, Niccolo Bolli5, Åke Borg2, Anne Lise Børresen-Dale6, Anne Lise Børresen-Dale7, Sandrine Boyault8, Birgit Burkhardt8, Adam Butler1, Carlos Caldas9, Helen Davies1, Christine Desmedt, Roland Eils5, Jorunn E. Eyfjord10, John A. Foekens11, Mel Greaves12, Fumie Hosoda13, Barbara Hutter5, Tomislav Ilicic1, Sandrine Imbeaud14, Sandrine Imbeaud15, Marcin Imielinsk15, Natalie Jäger5, David T. W. Jones16, David T. Jones1, Stian Knappskog17, Stian Knappskog11, Marcel Kool11, Sunil R. Lakhani18, Carlos López-Otín18, Sancha Martin1, Nikhil C. Munshi19, Nikhil C. Munshi20, Hiromi Nakamura13, Paul A. Northcott16, Marina Pajic21, Elli Papaemmanuil1, Angelo Paradiso22, John V. Pearson23, Xose S. Puente18, Keiran Raine1, Manasa Ramakrishna1, Andrea L. Richardson20, Andrea L. Richardson22, Julia Richter22, Philip Rosenstiel22, Matthias Schlesner5, Ton N. Schumacher24, Paul N. Span25, Jon W. Teague1, Yasushi Totoki13, Andrew Tutt24, Rafael Valdés-Mas18, Marit M. van Buuren25, Laura van ’t Veer26, Anne Vincent-Salomon27, Nicola Waddell23, Lucy R. Yates1, Icgc PedBrain24, Jessica Zucman-Rossi14, Jessica Zucman-Rossi15, P. Andrew Futreal1, Ultan McDermott1, Peter Lichter24, Matthew Meyerson15, Matthew Meyerson20, Sean M. Grimmond23, Reiner Siebert22, Elias Campo28, Tatsuhiro Shibata13, Stefan M. Pfister11, Stefan M. Pfister16, Peter J. Campbell29, Peter J. Campbell3, Peter J. Campbell30, Michael R. Stratton31, Michael R. Stratton3 
22 Aug 2013-Nature
TL;DR: It is shown that hypermutation localized to small genomic regions, ‘kataegis’, is found in many cancer types, and this results reveal the diversity of mutational processes underlying the development of cancer.
Abstract: All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.

7,904 citations

Journal ArticleDOI
03 Apr 2015-Science
TL;DR: Treatment efficacy was associated with a higher number of mutations in the tumors, and a tumor-specific T cell response paralleled tumor regression in one patient, suggesting that the genomic landscape of lung cancers shapes response to anti–PD-1 therapy.
Abstract: Immune checkpoint inhibitors, which unleash a patient’s own T cells to kill tumors, are revolutionizing cancer treatment. To unravel the genomic determinants of response to this therapy, we used whole-exome sequencing of non–small cell lung cancers treated with pembrolizumab, an antibody targeting programmed cell death-1 (PD-1). In two independent cohorts, higher nonsynonymous mutation burden in tumors was associated with improved objective response, durable clinical benefit, and progression-free survival. Efficacy also correlated with the molecular smoking signature, higher neoantigen burden, and DNA repair pathway mutations; each factor was also associated with mutation burden. In one responder, neoantigen-specific CD8+ T cell responses paralleled tumor regression, suggesting that anti–PD-1 therapy enhances neoantigen-specific T cell reactivity. Our results suggest that the genomic landscape of lung cancers shapes response to anti–PD-1 therapy.

6,215 citations

Journal Article
TL;DR: In this paper, the coding exons of the family of 518 protein kinases were sequenced in 210 cancers of diverse histological types to explore the nature of the information that will be derived from cancer genome sequencing.
Abstract: AACR Centennial Conference: Translational Cancer Medicine-- Nov 4-8, 2007; Singapore PL02-05 All cancers are due to abnormalities in DNA. The availability of the human genome sequence has led to the proposal that resequencing of cancer genomes will reveal the full complement of somatic mutations and hence all the cancer genes. To explore the nature of the information that will be derived from cancer genome sequencing we have sequenced the coding exons of the family of 518 protein kinases, ~1.3Mb DNA per cancer sample, in 210 cancers of diverse histological types. Despite the screen being directed toward the coding regions of a gene family that has previously been strongly implicated in oncogenesis, the results indicate that the majority of somatic mutations detected are “passengers”. There is considerable variation in the number and pattern of these mutations between individual cancers, indicating substantial diversity of processes of molecular evolution between cancers. The imprints of exogenous mutagenic exposures, mutagenic treatment regimes and DNA repair defects can all be seen in the distinctive mutational signatures of individual cancers. This systematic mutation screen and others have previously yielded a number of cancer genes that are frequently mutated in one or more cancer types and which are now anticancer drug targets (for example BRAF , PIK3CA , and EGFR ). However, detailed analyses of the data from our screen additionally suggest that there exist a large number of additional “driver” mutations which are distributed across a substantial number of genes. It therefore appears that cells may be able to utilise mutations in a large repertoire of potential cancer genes to acquire the neoplastic phenotype. However, many of these genes are employed only infrequently. These findings may have implications for future anticancer drug development.

2,737 citations

Journal ArticleDOI
TL;DR: Evidence that cancer and diseases of aging are two sides of the DNAdamage problem is presented, followed by an account of the derailment of genome guardian mechanisms in cancer and of how this cancerspecific phenomenon can be exploited for treatment.
Abstract: NA damage has emerged as a major culprit in cancer and many diseases related to aging. The stability of the genome is supported by an intricate machinery of repair, damage tolerance, and checkpoint pathways that counteracts DNA damage. In addition, DNA damage and other stresses can trigger a highly conserved, anticancer, antiaging survival response that suppresses metabolism and growth and boosts defenses that maintain the integrity of the cell. Induction of the survival response may allow interventions that improve health and extend the life span. Recently, the first candidate for such interventions, rapamycin (also known as sirolimus), has been identified. 1 Compromised repair systems in tumors also offer opportunities for intervention, making it possible to attack malignant cells in which maintenance of the genome has been weakened. Time-dependent accumulation of damage in cells and organs is associated with gradual functional decline and aging. 2 The molecular basis of this phenomenon is unclear, 3-5 whereas in cancer, DNA alterations are the major culprit. In this review, I present evidence that cancer and diseases of aging are two sides of the DNAdamage problem. An examination of the importance of DNA damage and the systems of genome maintenance in relation to aging is followed by an account of the derailment of genome guardian mechanisms in cancer and of how this cancerspecific phenomenon can be exploited for treatment.

1,917 citations

Journal ArticleDOI
25 May 2012-Cell
TL;DR: This work generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes, finding a remarkable phenomenon of localized hypermutation, termed “kataegis,” was observed.

1,699 citations