scispace - formally typeset
Search or ask a question
Author

Ahmad Hosseini-Bandegharaei

Other affiliations: Semnan University
Bio: Ahmad Hosseini-Bandegharaei is an academic researcher from Islamic Azad University. The author has contributed to research in topics: Adsorption & Photocatalysis. The author has an hindex of 36, co-authored 99 publications receiving 5061 citations. Previous affiliations of Ahmad Hosseini-Bandegharaei include Semnan University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: The inaccurate use of technical terms, the problem associated with quantities for measuring adsorption performance, the important roles of the adsorbate and adsorbent pKa, and mistakes related to the study of adsor adaptation kinetics, isotherms, and thermodynamics are discussed.

1,691 citations

Journal ArticleDOI
TL;DR: In this article, the Van't Hoff equation is used in different manners without any criteria about the concepts of physical-chemistry of equilibrium for calculation of thermodynamic parameters of adsorption.

999 citations

Journal ArticleDOI
TL;DR: In this article, an in-depth overview comprising traditional photocatalysis along with Z-scheme photocatalytic systems have been exploited and discussed with respect to their facile synthesis techniques and application in environmental restoration.

339 citations

Journal ArticleDOI
TL;DR: In this paper, the authors highlight strategies to improve the activity of conventional semiconductor photocatalysts via coupling with carbon quantum dots (CQDs) and suggest research directions to address challenges such as the inadequate separation of photoinduced charge carriers.

299 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive study on vacancy defect engineered graphite-like carbon nitride (g-C3N4; abbreviated as GCN) photocatalysts is presented.
Abstract: As an alluring metal-free polymeric semiconductor material, graphite-like carbon nitride (g-C3N4; abbreviated as GCN) has triggered a new impetus in the field of photocatalysis, mainly favoured from its fascinating physicochemical and photoelectronic structural features. However, certain inherent drawbacks, involving rapid reassembly of photocarriers, low specific surface area and insufficient optical absorption, limit the wide-range applicability of GCN. Generation of 0D point defects mainly by introducing vacancies (C and/or N) into the framework of GCN has spurred extensive consideration owing to their distinctive qualities to manoeuvre substantially, the optical absorption, radiative carrier isolation, and surface photoreactions. The present review endeavours to summarise a comprehensive study on vacancy defect engineered GCN. Starting from the basic introduction of defects and C/N vacancy modulated GCN, numerous advanced strategies for the controlled designing of vacancy rich GCN have been explored and discussed. Afterwards, light was thrown on the various substantial technologies which are useful for characterising and identifying the introduction of defects in GCN. The salient significance of defect engineering in GCN has been reviewed concerning its impact on optical absorption, charge isolation and surface photoreaction ability. Typically, the achievement of defect engineered GCN has been scrutinised toward various applications like photocatalytic water splitting, CO2 conversion, N2 fixation, pollutant degradation, and H2O2 production. Finally, the review ends with conclusions and vouchsafing future challenges and opportunities on the intriguing and emerging area of vacancy defect engineered GCN photocatalysts.

294 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The inaccurate use of technical terms, the problem associated with quantities for measuring adsorption performance, the important roles of the adsorbate and adsorbent pKa, and mistakes related to the study of adsor adaptation kinetics, isotherms, and thermodynamics are discussed.

1,691 citations

Posted Content
TL;DR: The two-step solution-phase reactions to form hybrid materials of Mn(3)O(4) nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications should offer a new technique for the design and synthesis of battery electrodes based on highly insulating materials.
Abstract: We developed two-step solution-phase reactions to form hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications. Mn3O4 nanoparticles grown selectively on RGO sheets over free particle growth in solution allowed for the electrically insulating Mn3O4 nanoparticles wired up to a current collector through the underlying conducting graphene network. The Mn3O4 nanoparticles formed on RGO show a high specific capacity up to ~900mAh/g near its theoretical capacity with good rate capability and cycling stability, owing to the intimate interactions between the graphene substrates and the Mn3O4 nanoparticles grown atop. The Mn3O4/RGO hybrid could be a promising candidate material for high-capacity, low-cost, and environmentally friendly anode for lithium ion batteries. Our growth-on-graphene approach should offer a new technique for design and synthesis of battery electrodes based on highly insulating materials.

1,587 citations

Journal ArticleDOI
TL;DR: This review focuses on recent progress in reported MOFs and MOF-based composites as superior adsorbents for the efficient removal of toxic and nuclear waste-related metal ions.
Abstract: Highly efficient removal of metal ion pollutants, such as toxic and nuclear waste-related metal ions, remains a serious task from the biological and environmental standpoint because of their harmful effects on human health and the environment. Recently, highly porous metal–organic frameworks (MOFs), with excellent chemical stability and abundant functional groups, have represented a new addition to the area of capturing various types of hazardous metal ion pollutants. This review focuses on recent progress in reported MOFs and MOF-based composites as superior adsorbents for the efficient removal of toxic and nuclear waste-related metal ions. Aspects related to the interaction mechanisms between metal ions and MOF-based materials are systematically summarized, including macroscopic batch experiments, microscopic spectroscopy analysis, and theoretical calculations. The adsorption properties of various MOF-based materials are assessed and compared with those of other widely used adsorbents. Finally, we propose our personal insights into future research opportunities and challenges in the hope of stimulating more researchers to engage in this new field of MOF-based materials for environmental pollution management.

1,327 citations

Journal ArticleDOI
TL;DR: Criteria for choosing the optimum isotherm model is established through a critical review of different adsorption models and the use of various mathematically error functions such as linear regression analysis, nonlinear regressionAnalysis, and error functions for adsorption data optimization.

1,151 citations