scispace - formally typeset
Search or ask a question
Author

Ahmad Kermanpur

Bio: Ahmad Kermanpur is an academic researcher from Isfahan University of Technology. The author has contributed to research in topics: Microstructure & Martensite. The author has an hindex of 33, co-authored 181 publications receiving 4106 citations. Previous affiliations of Ahmad Kermanpur include Imperial College London & Sharif University of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a simple solution-processed technological approach for depositing SnO2 layers in planar PSCs yields a high stabilized power conversion efficiency close to 21%, exhibiting stable performance under real operating conditions for over 60 hours.
Abstract: Perovskite solar cells (PSCs) are one of the most promising lab-scale technologies to deliver inexpensive solar electricity. Low-temperature planar PSCs are particularly suited for large-scale manufacturing. Here, we propose a simple, solution-processed technological approach for depositing SnO2 layers. The use of these layers in planar PSCs yields a high stabilized power conversion efficiency close to 21%, exhibiting stable performance under real operating conditions for over 60 hours. In addition, this method yielded remarkable voltages of 1214 mV at a band gap of 1.62 eV (approaching the thermodynamic limit of 1.32 V) confirming the high selectivity of the solution-processed layers. PSCs aged under 1 sun illumination and maximum power point tracking showed a final PCE of 20.7% after ageing and dark storage, which is slightly higher than the original efficiency. This approach represents an advancement in the understanding of the role of electron selective layers on the efficiency and stability of PSCs. Therefore, the newly proposed approach constitutes a simple, scalable method paving the way for industrialization of perovskite solar cells.

687 citations

Journal ArticleDOI
TL;DR: The microstructure and mechanical properties of Inconel 617/310 austenitic stainless steel dissimilar welds were investigated in this article, where three types of filler materials, including nickel-base fillers, were used to obtain dissimilar joint using the gas tungsten arc welding process.

192 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of cold rolling temperature and pre-strain on the volume fraction of strain-induced martensite in order to obtain nanocrystalline structures of 316L stainless steel were investigated.
Abstract: This work aimed to study the effects of cold rolling temperature and pre-strain on the volume fraction of strain-induced martensite in order to obtain nanocrystalline structures of 316L stainless steel. Hot rolling and cold rolling followed by annealing treatments were conducted under different conditions. The microstructures and the volume fraction of phases were characterized by scanning electron microscopy and feritscope tests, respectively. The hardness and tensile properties of the specimens were also measured. The results showed that decreasing the rolling temperature while increasing pre-strain leads to increased the volume fraction of martensite accompanied by decreased saturating strain and, further, that this behavior affects the degree of grain refinement. The smallest grain size of about 30–40 nm was obtained via 30% pre-strain at 523 K and subsequent conventional cold rolling at 258 K with a strain and a strain rate of 95% and 0.5 s −1 , respectively, followed by annealing at 1023 K for 300 s. Uniaxial tensile tests at room temperature showed that this specimen exhibits very high tensile strength of about 1385 MPa.

161 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of doping on compositional, structural, morphological, and device performance when these layers are employed as electron-selective layers (ESLs) in planar-structured PSCs were investigated.
Abstract: Low-temperature planar organic–inorganic lead halide perovskite solar cells have been at the center of attraction as power conversion efficiencies go beyond 20%. Here, we investigate Nb doping of SnO2 deposited by a low-cost, scalable chemical bath deposition (CBD) method. We study the effects of doping on compositional, structural, morphological, and device performance when these layers are employed as electron-selective layers (ESLs) in planar-structured PSCs. We use doping concentrations of 0, 1, 5, and 10 mol % Nb to Sn in solution. The ESLs were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, and ultraviolet–visible spectroscopy. ESLs with an optimum 5 mol % Nb doping yielded, on average, an improvement of all the device photovoltaic parameters with a champion power conversion efficiency of 20.5% (20.1% stabilized).

140 citations

Journal ArticleDOI
TL;DR: In this article, the effect of different thickness reductions by cold rolling on the microstructure and mechanical properties of AISI 304L austenitic stainless steel were investigated, and the results indicated that formation of strain-induced martensite clearly resulted in a significant strengthening of the steel.

138 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, an organic halide salt phenethylammonium iodide (PEAI) was used on HC(NH2)2-CH3NH3 mixed perovskite films for surface defect passivation.
Abstract: In recent years, the power conversion efficiency of perovskite solar cells has increased to reach over 20%. Finding an effective means of defect passivation is thought to be a promising route for bringing further increases in the power conversion efficiency and the open-circuit voltage (VOC) of perovskite solar cells. Here, we report the use of an organic halide salt phenethylammonium iodide (PEAI) on HC(NH2)2–CH3NH3 mixed perovskite films for surface defect passivation. We find that PEAI can form on the perovskite surface and results in higher-efficiency cells by reducing the defects and suppressing non-radiative recombination. As a result, planar perovskite solar cells with a certificated efficiency of 23.32% (quasi-steady state) are obtained. In addition, a VOC as high as 1.18 V is achieved at the absorption threshold of 1.53 eV, which is 94.4% of the Shockley–Queisser limit VOC (1.25 V). Planar perovskite solar cells that have been passivated using the organic halide salt phenethylammonium iodide are shown to have suppressed non-radiative recombination and operate with a certified power conversion efficiency of 23.3%.

3,064 citations

01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations

Journal ArticleDOI
17 Feb 2017-Science
TL;DR: A contact-passivation strategy using chlorine-capped TiO2 colloidal nanocrystal film that mitigates interfacial recombination and improves interface binding in low-temperature planar solar cells is reported.
Abstract: Planar perovskite solar cells (PSCs) made entirely via solution processing at low temperatures (<150°C) offer promise for simple manufacturing, compatibility with flexible substrates, and perovskite-based tandem devices. However, these PSCs require an electron-selective layer that performs well with similar processing. We report a contact-passivation strategy using chlorine-capped TiO2 colloidal nanocrystal film that mitigates interfacial recombination and improves interface binding in low-temperature planar solar cells. We fabricated solar cells with certified efficiencies of 20.1 and 19.5% for active areas of 0.049 and 1.1 square centimeters, respectively, achieved via low-temperature solution processing. Solar cells with efficiency greater than 20% retained 90% (97% after dark recovery) of their initial performance after 500 hours of continuous room-temperature operation at their maximum power point under 1-sun illumination (where 1 sun is defined as the standard illumination at AM1.5, or 1 kilowatt/square meter).

1,912 citations

Journal ArticleDOI
TL;DR: The chemical, physical, and mechanical characteristics of nickel-based superalloys are reviewed with emphasis on the use of this class of materials within turbine engines as mentioned in this paper, and the role of major and minor alloying additions in multicomponent commercial cast and wrought super-alloys is discussed.
Abstract: The chemical, physical, and mechanical characteristics of nickel-based superalloys are reviewed with emphasis on the use of this class of materials within turbine engines. The role of major and minor alloying additions in multicomponent commercial cast and wrought superalloys is discussed. Microstructural stability and phases observed during processing and in subsequent elevated-temperature service are summarized. Processing paths and recent advances in processing are addressed. Mechanical properties and deformation mechanisms are reviewed, including tensile properties, creep, fatigue, and cyclic crack growth. I. Introduction N ICKEL-BASED superalloys are an unusual class of metallic materials with an exceptional combination of hightemperature strength, toughness, and resistance to degradation in corrosive or oxidizing environments. These materials are widely used in aircraft and power-generation turbines, rocket engines, and other challenging environments, including nuclear power and chemical processing plants. Intensive alloy and process development activities during the past few decades have resulted in alloys that can tolerate average temperatures of 1050 ◦ C with occasional excursions (or local hot spots near airfoil tips) to temperatures as high as 1200 ◦ C, 1 which is approximately 90% of the melting point of the material. The underlying aspects of microstructure and composition that result in these exceptional properties are briefly reviewed here. Major classes of superalloys that are utilized in gas-turbine engines and the corresponding processes for their production are outlined along with characteristic mechanical and physical properties.

1,826 citations