Author
Ahmed A. Kishk
Other affiliations: University of Manitoba, Concordia University, Chalmers University of Technology ...read more
Bio: Ahmed A. Kishk is an academic researcher from Concordia University Wisconsin. The author has contributed to research in topics: Dielectric resonator antenna & Microstrip antenna. The author has an hindex of 66, co-authored 701 publications receiving 15688 citations. Previous affiliations of Ahmed A. Kishk include University of Manitoba & Concordia University.
Papers published on a yearly basis
Papers
More filters
Book•
30 Jun 1994TL;DR: In this article, the authors describe the theory, design, performance and application of microwave horns and feeds for reflector antennas, and describe design principles and methods of analysis, as well as the first general treatment of feeds for RSS antennas.
Abstract: This book is devoted to describing the theory, design, performance and application of microwave horns and feeds for reflector. The first general treatment of feeds for reflector antennas, it describes design principles and methods of analysis.
544 citations
TL;DR: A new numerical stochastic optimization algorithm, inspired from colonizing weeds, is proposed for Electromagnetic applications, and invasive weed optimization (IWO) is described and applied to different electromagnetic problems.
Abstract: A new numerical stochastic optimization algorithm, inspired from colonizing weeds, is proposed for Electromagnetic applications. This algorithm, invasive weed optimization (IWO), is described and applied to different electromagnetic problems. The linear array antenna synthesis, the standard problem used by antenna engineers, is presented as an example for the application of the IWO. Compared to the PSO, The features of the IWO are shown. As another application, the design of aperiodic thinned array antennas by optimizing the number of elements and at the same time their positions is presented. By implementing this new scenario, thinned arrays with less number of elements and lower sidelobes, compared to the results achieved by genetic algorithm (GA) for the same aperture dimensions, are obtained. Finally, the IWO is applied to a U-slot patch antenna to have the desired dual-band characteristics.
335 citations
TL;DR: In this article, a wideband dielectric resonator antenna with conical shape was designed by shape shaping of the materials and the excitation was considered to be a coaxial probe displaced from the cone axis.
Abstract: Wideband dielectric resonator antennas are designed by shaping the dielectric materials. New dielectric resonator antennas of conical shape are experimentally examined and some results are verified numerically. Four different cone shapes are considered. The excitation is considered to be a coaxial probe displaced from the cone axis. Two configurations show wideband performance. The split cone achieved about 50% impedance bandwidth. The radiation patterns are computed within the band to examine the effect of the different modes excited on the radiation patterns.
299 citations
TL;DR: In this paper, the authors proposed a band-notched ultrawideband (UWB) antenna with independent controllable strips in terms of the notch frequency and the width of the band notches.
Abstract: To prevent interference problems due to existing nearby communication systems within an ultrawideband (UWB) operating frequency, the significance of an efficient band-notched design is increased. Here, the band-notches are realized by adding independent controllable strips in terms of the notch frequency and the width of the band-notches to the fork shape of the UWB antenna. The size of the flat type band-notched UWB antenna is etched on 24 times 36 mm2 substrate. Two novel antennas are presented. One antenna is designed for single band-notch with a separated strip to cover the 5.15-5.825 GHz band. The second antenna is designed for dual band-notches using two separated strips to cover the 5.15-5.35 GHz band and 5.725-5.825 GHz band. The simulation and measurement show that the proposed antenna achieves a wide bandwidth from 3 to 12 GHz with the dual band-notches successfully.
283 citations
TL;DR: In this paper, the input impedance of stacked cylindrical dielectric resonator antennas is investigated experimentally, and the bandwidth of 25% has been observed for a standing wave ratio better than 2.
Abstract: The input impedance of stacked cylindrical dielectric resonator antennas is investigated experimentally. The dielectric resonators are made of different materials. The bandwidth of 25% has been observed for a standing wave ratio better than 2.
253 citations
Cited by
More filters
TL;DR: In this paper, a new type of metallic structure has been developed that is characterized by having high surface impedance, which is analogous to a corrugated metal surface in which the corrugations have been folded up into lumped-circuit elements and distributed in a two-dimensional lattice.
Abstract: A new type of metallic electromagnetic structure has been developed that is characterized by having high surface impedance. Although it is made of continuous metal, and conducts dc currents, it does not conduct ac currents within a forbidden frequency band. Unlike normal conductors, this new surface does not support propagating surface waves, and its image currents are not phase reversed. The geometry is analogous to a corrugated metal surface in which the corrugations have been folded up into lumped-circuit elements, and distributed in a two-dimensional lattice. The surface can be described using solid-state band theory concepts, even though the periodicity is much less than the free-space wavelength. This unique material is applicable to a variety of electromagnetic problems, including new kinds of low-profile antennas.
4,264 citations
[...]
01 Jan 1992
TL;DR: In this article, a brief overview of the basic characteristics of microstrip antennas is given, and the most significant developments in microstrip antenna technology have been made in the last several years.
Abstract: Microstrip antennas have been one of the most innovative topics in antenna theory and design in recent years, and are increasingly finding application in a wide range of modern microwave systems. This paper begins with a brief overview of the basic characteristics of microstrip antennas, and then concentrates on the most significant developments in microstrip antenna technology that have been made in the last several years. Emphasis is on new antenna configurations for improved electrical performance and manufacturability and on advances in the analytical modeling of microstrip antennas and arrays. >
1,604 citations
TL;DR: In this article, the authors provide an overview of the recent advances in the modelling, design and technological implementation of SIW structures and components, as well as their application in the development of circuits and components operating in the microwave and millimetre wave region.
Abstract: Substrate-integrated waveguide (SIW) technology represents an emerging and very promising candidate for the development of circuits and components operating in the microwave and millimetre-wave region. SIW structures are generally fabricated by using two rows of conducting cylinders or slots embedded in a dielectric substrate that connects two parallel metal plates, and permit the implementation of classical rectangular waveguide components in planar form, along with printed circuitry, active devices and antennas. This study aims to provide an overview of the recent advances in the modelling, design and technological implementation of SIW structures and components.
1,129 citations
01 Jan 2018
TL;DR: Its origin and background is introduced and the theory analysis of the PSO is carried out, which analyzes its present situation of research and application in algorithm structure, parameter selection, topology structure, discrete PSO algorithm and parallel PSO algorithms, multi-objective optimization PSO and its engineering applications.
Abstract: Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm motivated by intelligent collective behavior of some animals such as flocks of birds or schools of fish. Since presented in 1995, it has experienced a multitude of enhancements. As researchers have learned about the technique, they derived new versions aiming to different demands, developed new applications in a host of areas, published theoretical studies of the effects of the various parameters and proposed many variants of the algorithm. This paper introduces its origin and background and carries out the theory analysis of the PSO. Then, we analyze its present situation of research and application in algorithm structure, parameter selection, topology structure, discrete PSO algorithm and parallel PSO algorithm, multi-objective optimization PSO and its engineering applications. Finally, the existing problems are analyzed and future research directions are presented.
1,091 citations
TL;DR: The potential of transformation optics to create functionalities in which the optical properties can be designed almost at will is reviewed, which can be used to engineer various optical illusion effects, such as the invisibility cloak.
Abstract: Transformation optics describes the capability to design the path of light waves almost at will through the use of metamaterials that control effective materials properties on a subwavelength scale. In this review, the physics and applications of transformation optics are discussed.
1,085 citations