scispace - formally typeset
Search or ask a question
Author

Ahmed Ghoneim

Other affiliations: Menoufia University, Tanta University, Kent State University  ...read more
Bio: Ahmed Ghoneim is an academic researcher from King Saud University. The author has contributed to research in topics: Web service & Cloud computing. The author has an hindex of 25, co-authored 84 publications receiving 1769 citations. Previous affiliations of Ahmed Ghoneim include Menoufia University & Tanta University.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper introduces a new concept of task caching, and proposes efficient algorithm, called task caching and offloading (TCO), based on alternating iterative algorithm, which outperforms others in terms of less energy cost.
Abstract: While augment reality applications are becoming popular, more and more data-hungry and computation-intensive tasks are delay-sensitive. Mobile edge computing is expected to an effective solution to meet the low latency demand. In contrast to previous work on mobile edge computing, which mainly focus on computation offloading, this paper introduces a new concept of task caching. Task caching refers to the caching of completed task application and their related data in edge cloud. Then, we investigate the problem of joint optimization of task caching and offloading on edge cloud with the computing and storage resource constraint. We formulate this problem as mixed integer programming which is hard to solve. To solve the problem, we propose efficient algorithm, called task caching and offloading (TCO), based on alternating iterative algorithm. Finally, the simulation experimental results show that our proposed TCO algorithm outperforms others in terms of less energy cost.

219 citations

Journal ArticleDOI
TL;DR: A cervical cancer cell detection and classification system based on convolutional neural networks (CNNs) and an extreme learning machine (ELM)-based classifier that achieved 99.5% accuracy in the detection problem and 91.2% in the classification problem.

144 citations

Journal ArticleDOI
TL;DR: A new concept of computing task caching is introduced and the optimal computing task caches policy is given and joint optimization of computation, caching, and communication on the edge cloud, dubbed Edge-CoCaCo, is proposed and the solution to that optimization problem is given.
Abstract: With the development of recent innovative applications (e.g., augmented reality, natural language processing, and various cognitive applications), more and more computation-intensive and rich-media tasks are delay-sensitive. Edge cloud computing is expected to be an effective solution to meet the demand for low latency. By the use of content offloading and/or computation offloading, users' quality of experience is improved with shorter delay. Compared to existing edge computing solutions, this article introduces a new concept of computing task caching and gives the optimal computing task caching policy. Furthermore, joint optimization of computation, caching, and communication on the edge cloud, dubbed Edge-CoCaCo, is proposed. Then we give the solution to that optimization problem. Finally, the simulation experimental results show that compared to the other schemes, Edge-CoCaCo has shorter delay.

126 citations

Journal ArticleDOI
TL;DR: This article proposes a lightweight and physically secure mutual authentication and secret key establishment protocol that uses physical unclonable functions (PUFs) to enable the network devices to verify the doctor’s legitimacy and sensor node before establishing a session key.
Abstract: Due to the outbreak of COVID-19, the Internet of Medical Things (IoMT) has enabled the doctors to remotely diagnose the patients, control the medical equipment, and monitor the quarantined patients through their digital devices. Security is a major concern in IoMT because the Internet of Things (IoT) nodes exchange sensitive information between virtual medical facilities over the vulnerable wireless medium. Hence, the virtual facilities must be protected from adversarial threats through secure sessions. This article proposes a lightweight and physically secure mutual authentication and secret key establishment protocol that uses physical unclonable functions (PUFs) to enable the network devices to verify the doctor’s legitimacy (user) and sensor node before establishing a session key. PUF also protects the sensor nodes deployed in an unattended and hostile environment from tampering, cloning, and side-channel attacks. The proposed protocol exhibits all the necessary security properties required to protect the IoMT networks, like authentication, confidentiality, integrity, and anonymity. The formal AVISPA and informal security analysis demonstrate its robustness against attacks like impersonation, replay, a man in the middle, etc. The proposed protocol also consumes fewer resources to operate and is safe from physical attacks, making it more suitable for IoT-enabled medical network applications.

120 citations

Journal ArticleDOI
TL;DR: A new medical image forgery detection system for the healthcare framework to verify that images related to healthcare are not changed or altered and works seamlessly and in real time.
Abstract: With the invention of new communication technologies, new features and facilities are provided in a smart healthcare framework. The features and facilities aim to provide a seamless, easy-to-use, accurate, and real-time healthcare service to clients. As health is a sensitive issue, it should be taken care of with utmost security and caution. This article proposes a new medical image forgery detection system for the healthcare framework to verify that images related to healthcare are not changed or altered. The system works on a noise map of an image, applies a multi-resolution regression filter on the noise map, and feeds the output to support-vector-machine-based and extreme-learning-based classifiers. The noise map is created in an edge computing resource, while the filtering and classification are done in a core cloud computing resource. In this way, the system works seamlessly and in real time. The bandwidth requirement of the proposed system is also reasonable.

107 citations


Cited by
More filters
Book
01 Jan 2001
TL;DR: This chapter discusses Decision-Theoretic Foundations, Game Theory, Rationality, and Intelligence, and the Decision-Analytic Approach to Games, which aims to clarify the role of rationality in decision-making.
Abstract: Preface 1. Decision-Theoretic Foundations 1.1 Game Theory, Rationality, and Intelligence 1.2 Basic Concepts of Decision Theory 1.3 Axioms 1.4 The Expected-Utility Maximization Theorem 1.5 Equivalent Representations 1.6 Bayesian Conditional-Probability Systems 1.7 Limitations of the Bayesian Model 1.8 Domination 1.9 Proofs of the Domination Theorems Exercises 2. Basic Models 2.1 Games in Extensive Form 2.2 Strategic Form and the Normal Representation 2.3 Equivalence of Strategic-Form Games 2.4 Reduced Normal Representations 2.5 Elimination of Dominated Strategies 2.6 Multiagent Representations 2.7 Common Knowledge 2.8 Bayesian Games 2.9 Modeling Games with Incomplete Information Exercises 3. Equilibria of Strategic-Form Games 3.1 Domination and Ratonalizability 3.2 Nash Equilibrium 3.3 Computing Nash Equilibria 3.4 Significance of Nash Equilibria 3.5 The Focal-Point Effect 3.6 The Decision-Analytic Approach to Games 3.7 Evolution. Resistance. and Risk Dominance 3.8 Two-Person Zero-Sum Games 3.9 Bayesian Equilibria 3.10 Purification of Randomized Strategies in Equilibria 3.11 Auctions 3.12 Proof of Existence of Equilibrium 3.13 Infinite Strategy Sets Exercises 4. Sequential Equilibria of Extensive-Form Games 4.1 Mixed Strategies and Behavioral Strategies 4.2 Equilibria in Behavioral Strategies 4.3 Sequential Rationality at Information States with Positive Probability 4.4 Consistent Beliefs and Sequential Rationality at All Information States 4.5 Computing Sequential Equilibria 4.6 Subgame-Perfect Equilibria 4.7 Games with Perfect Information 4.8 Adding Chance Events with Small Probability 4.9 Forward Induction 4.10 Voting and Binary Agendas 4.11 Technical Proofs Exercises 5. Refinements of Equilibrium in Strategic Form 5.1 Introduction 5.2 Perfect Equilibria 5.3 Existence of Perfect and Sequential Equilibria 5.4 Proper Equilibria 5.5 Persistent Equilibria 5.6 Stable Sets 01 Equilibria 5.7 Generic Properties 5.8 Conclusions Exercises 6. Games with Communication 6.1 Contracts and Correlated Strategies 6.2 Correlated Equilibria 6.3 Bayesian Games with Communication 6.4 Bayesian Collective-Choice Problems and Bayesian Bargaining Problems 6.5 Trading Problems with Linear Utility 6.6 General Participation Constraints for Bayesian Games with Contracts 6.7 Sender-Receiver Games 6.8 Acceptable and Predominant Correlated Equilibria 6.9 Communication in Extensive-Form and Multistage Games Exercises Bibliographic Note 7. Repeated Games 7.1 The Repeated Prisoners Dilemma 7.2 A General Model of Repeated Garnet 7.3 Stationary Equilibria of Repeated Games with Complete State Information and Discounting 7.4 Repeated Games with Standard Information: Examples 7.5 General Feasibility Theorems for Standard Repeated Games 7.6 Finitely Repeated Games and the Role of Initial Doubt 7.7 Imperfect Observability of Moves 7.8 Repeated Wines in Large Decentralized Groups 7.9 Repeated Games with Incomplete Information 7.10 Continuous Time 7.11 Evolutionary Simulation of Repeated Games Exercises 8. Bargaining and Cooperation in Two-Person Games 8.1 Noncooperative Foundations of Cooperative Game Theory 8.2 Two-Person Bargaining Problems and the Nash Bargaining Solution 8.3 Interpersonal Comparisons of Weighted Utility 8.4 Transferable Utility 8.5 Rational Threats 8.6 Other Bargaining Solutions 8.7 An Alternating-Offer Bargaining Game 8.8 An Alternating-Offer Game with Incomplete Information 8.9 A Discrete Alternating-Offer Game 8.10 Renegotiation Exercises 9. Coalitions in Cooperative Games 9.1 Introduction to Coalitional Analysis 9.2 Characteristic Functions with Transferable Utility 9.3 The Core 9.4 The Shapkey Value 9.5 Values with Cooperation Structures 9.6 Other Solution Concepts 9.7 Colational Games with Nontransferable Utility 9.8 Cores without Transferable Utility 9.9 Values without Transferable Utility Exercises Bibliographic Note 10. Cooperation under Uncertainty 10.1 Introduction 10.2 Concepts of Efficiency 10.3 An Example 10.4 Ex Post Inefficiency and Subsequent Oilers 10.5 Computing Incentive-Efficient Mechanisms 10.6 Inscrutability and Durability 10.7 Mechanism Selection by an Informed Principal 10.8 Neutral Bargaining Solutions 10.9 Dynamic Matching Processes with Incomplete Information Exercises Bibliography Index

3,569 citations

Journal ArticleDOI
TL;DR: A comprehensive survey, analyzing how edge computing improves the performance of IoT networks and considers security issues in edge computing, evaluating the availability, integrity, and the confidentiality of security strategies of each group, and proposing a framework for security evaluation of IoT Networks with edge computing.
Abstract: The Internet of Things (IoT) now permeates our daily lives, providing important measurement and collection tools to inform our every decision. Millions of sensors and devices are continuously producing data and exchanging important messages via complex networks supporting machine-to-machine communications and monitoring and controlling critical smart-world infrastructures. As a strategy to mitigate the escalation in resource congestion, edge computing has emerged as a new paradigm to solve IoT and localized computing needs. Compared with the well-known cloud computing, edge computing will migrate data computation or storage to the network “edge,” near the end users. Thus, a number of computation nodes distributed across the network can offload the computational stress away from the centralized data center, and can significantly reduce the latency in message exchange. In addition, the distributed structure can balance network traffic and avoid the traffic peaks in IoT networks, reducing the transmission latency between edge/cloudlet servers and end users, as well as reducing response times for real-time IoT applications in comparison with traditional cloud services. Furthermore, by transferring computation and communication overhead from nodes with limited battery supply to nodes with significant power resources, the system can extend the lifetime of the individual nodes. In this paper, we conduct a comprehensive survey, analyzing how edge computing improves the performance of IoT networks. We categorize edge computing into different groups based on architecture, and study their performance by comparing network latency, bandwidth occupation, energy consumption, and overhead. In addition, we consider security issues in edge computing, evaluating the availability, integrity, and the confidentiality of security strategies of each group, and propose a framework for security evaluation of IoT networks with edge computing. Finally, we compare the performance of various IoT applications (smart city, smart grid, smart transportation, and so on) in edge computing and traditional cloud computing architectures.

1,008 citations

Journal ArticleDOI
TL;DR: This paper streamline machine learning algorithms for effective prediction of chronic disease outbreak in disease-frequent communities by proposing a new convolutional neural network (CNN)-based multimodal disease risk prediction algorithm using structured and unstructured data from hospital.
Abstract: With big data growth in biomedical and healthcare communities, accurate analysis of medical data benefits early disease detection, patient care, and community services. However, the analysis accuracy is reduced when the quality of medical data is incomplete. Moreover, different regions exhibit unique characteristics of certain regional diseases, which may weaken the prediction of disease outbreaks. In this paper, we streamline machine learning algorithms for effective prediction of chronic disease outbreak in disease-frequent communities. We experiment the modified prediction models over real-life hospital data collected from central China in 2013–2015. To overcome the difficulty of incomplete data, we use a latent factor model to reconstruct the missing data. We experiment on a regional chronic disease of cerebral infarction. We propose a new convolutional neural network (CNN)-based multimodal disease risk prediction algorithm using structured and unstructured data from hospital. To the best of our knowledge, none of the existing work focused on both data types in the area of medical big data analytics. Compared with several typical prediction algorithms, the prediction accuracy of our proposed algorithm reaches 94.8% with a convergence speed, which is faster than that of the CNN-based unimodal disease risk prediction algorithm.

764 citations