scispace - formally typeset
Search or ask a question
Author

Ahmed Sobhy

Bio: Ahmed Sobhy is an academic researcher from Suez Canal University. The author has contributed to research in topics: Statistical classification & Rough set. The author has an hindex of 2, co-authored 2 publications receiving 16 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a novel KNN variant (KNNV) algorithm is proposed to handle both incompleteness and heterogeneity, as well as to find an ideal value for K. The KNNV algorithm takes an incomplete, heterogeneous dataset, containing medical records of people, and identifies those cases with COVID-19.
Abstract: Great efforts are now underway to control the coronavirus 2019 disease (COVID-19). Millions of people are medically examined, and their data keep piling up awaiting classification. The data are typically both incomplete and heterogeneous which hampers classical classification algorithms. Some researchers have recently modified the popular KNN algorithm as a solution, where they handle incompleteness by imputation and heterogeneity by converting categorical data into numbers. In this article, we introduce a novel KNN variant (KNNV) algorithm that provides better results as demonstrated by thorough experimental work. We employ rough set theoretic techniques to handle both incompleteness and heterogeneity, as well as to find an ideal value for K. The KNNV algorithm takes an incomplete, heterogeneous dataset, containing medical records of people, and identifies those cases with COVID-19. We use in the process two popular distance metrics, Euclidean and Mahalanobis, in an effort to widen the operational scope. The KNNV algorithm is implemented and tested on a real dataset from the Italian Society of Medical and Interventional Radiology. The experimental results show that it can efficiently and accurately classify COVID-19 cases. It is also compared to three KNN derivatives. The comparison results show that it greatly outperforms all its competitors in terms of four metrics: precision, recall, accuracy, and F-Score. The algorithm given in this article can be easily applied to classify other diseases. Moreover, its methodology can be further extended to do general classification tasks outside the medical field.

17 citations

Journal ArticleDOI
TL;DR: An efficient rough set theoretic (RST) algorithm is developed to compute the approximation space of the IIS, which addresses the incompleteness problem and a comparison test with similar approaches shows that it has superior performance.

16 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Experimental results have shown that the proposed HDS outperforms the other competitors in terms of the average value of accuracy, precision, recall, and F-measure in which it provides about of 97.658%, 96.756, 96.55%, and 96.615% respectively.

60 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors proposed a detection system based on the mobile phone, which extracted four features from the gray level co-occurrence matrixes (GLCMs) of the face mask micro-photos.
Abstract: Coronavirus Disease 2019 (COVID-19) has spread all over the world since it broke out massively in December 2019, which has caused a large loss to the whole world. Both the confirmed cases and death cases have reached a relatively frightening number. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of COVID-19, can be transmitted by small respiratory droplets. To curb its spread at the source, wearing masks is a convenient and effective measure. In most cases, people use face masks in a high-frequent but short-time way. Aimed at solving the problem that we do not know which service stage of the mask belongs to, we propose a detection system based on the mobile phone. We first extract four features from the gray level co-occurrence matrixes (GLCMs) of the face mask’s micro-photos. Next, a three-result detection system is accomplished by using K Nearest Neighbor (KNN) algorithm. The results of validation experiments show that our system can reach an accuracy of 82.87% (measured by macro-measures) on the testing dataset. The precision of Type I ‘normal use’ and the recall of type III ‘not recommended’ reach 92.00% and 92.59%. In future work, we plan to expand the detection objects to more mask types. This work demonstrates that the proposed mobile microscope system can be used as an assistant for face mask being used, which may play a positive role in fighting against COVID-19.

30 citations

Posted Content
TL;DR: This work demonstrates that the proposed mobile microscope system can be used as an assistant for face mask being used, which may play a positive role in fighting against COVID-19.
Abstract: Coronavirus Disease 2019 (COVID-19) has spread all over the world since it broke out massively in December 2019, which has caused a large loss to the whole world. Both the confirmed cases and death cases have reached a relatively frightening number. Syndrome coronaviruses 2 (SARS-CoV-2), the cause of COVID-19, can be transmitted by small respiratory droplets. To curb its spread at the source, wearing masks is a convenient and effective measure. In most cases, people use face masks in a high-frequent but short-time way. Aimed at solving the problem that we don't know which service stage of the mask belongs to, we propose a detection system based on the mobile phone. We first extract four features from the GLCMs of the face mask's micro-photos. Next, a three-result detection system is accomplished by using KNN algorithm. The results of validation experiments show that our system can reach a precision of 82.87% (standard deviation=8.5%) on the testing dataset. In future work, we plan to expand the detection objects to more mask types. This work demonstrates that the proposed mobile microscope system can be used as an assistant for face mask being used, which may play a positive role in fighting against COVID-19.

27 citations

Journal ArticleDOI
TL;DR: In this paper, a novel KNN variant (KNNV) algorithm is proposed to handle both incompleteness and heterogeneity, as well as to find an ideal value for K. The KNNV algorithm takes an incomplete, heterogeneous dataset, containing medical records of people, and identifies those cases with COVID-19.
Abstract: Great efforts are now underway to control the coronavirus 2019 disease (COVID-19). Millions of people are medically examined, and their data keep piling up awaiting classification. The data are typically both incomplete and heterogeneous which hampers classical classification algorithms. Some researchers have recently modified the popular KNN algorithm as a solution, where they handle incompleteness by imputation and heterogeneity by converting categorical data into numbers. In this article, we introduce a novel KNN variant (KNNV) algorithm that provides better results as demonstrated by thorough experimental work. We employ rough set theoretic techniques to handle both incompleteness and heterogeneity, as well as to find an ideal value for K. The KNNV algorithm takes an incomplete, heterogeneous dataset, containing medical records of people, and identifies those cases with COVID-19. We use in the process two popular distance metrics, Euclidean and Mahalanobis, in an effort to widen the operational scope. The KNNV algorithm is implemented and tested on a real dataset from the Italian Society of Medical and Interventional Radiology. The experimental results show that it can efficiently and accurately classify COVID-19 cases. It is also compared to three KNN derivatives. The comparison results show that it greatly outperforms all its competitors in terms of four metrics: precision, recall, accuracy, and F-Score. The algorithm given in this article can be easily applied to classify other diseases. Moreover, its methodology can be further extended to do general classification tasks outside the medical field.

17 citations

Journal ArticleDOI
TL;DR: In this article, the authors used system dynamics to establish a prevention and control model that combines material supply, public opinion dissemination, public awareness, scientific and technological research, staggered work shifts, and the warning effect (of law/policy).
Abstract: The COVID-19 pandemic now affects the entire world and has many major effects on the global economy, environment, health, and society. Focusing on the harm COVID-19 poses for human health and society, this study used system dynamics to establish a prevention and control model that combines material supply, public opinion dissemination, public awareness, scientific and technological research, staggered work shifts, and the warning effect (of law/policy). Causal loop analysis was used to identify interactions between subsystems and explore the key factors affecting social benefit. Further, different scenarios were dynamically simulated to explore optimal combination modes. The main findings were as follows: (1) The low supervision mode will produce a lag effect and superimposed effect on material supply and impede social benefit. (2) The strong supervision mode has multiple performances; it can reduce online public opinion dissemination and the rate of concealment and false declaration and improve government credibility and social benefit. However, a fading effect will appear in the middle and late periods, and over time, the effect of strong supervision will gradually weaken (but occasionally rebound) and thus require adjustment. These findings can provide a theoretical basis for improving epidemic prevention and control measures.

13 citations