scispace - formally typeset
Search or ask a question
Author

Ahmedin Jemal

Bio: Ahmedin Jemal is an academic researcher from American Cancer Society. The author has contributed to research in topics: Population & National Health Interview Survey. The author has an hindex of 7, co-authored 9 publications receiving 665 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: These results may underestimate the overall proportion of cancers attributable to modifiable factors, because the impact of all established risk factors could not be quantified, and many likely modifiable risk factors are not yet firmly established as causal.
Abstract: Contemporary information on the fraction of cancers that potentially could be prevented is useful for priority setting in cancer prevention and control. Herein, the authors estimate the proportion and number of invasive cancer cases and deaths, overall (excluding nonmelanoma skin cancers) and for 26 cancer types, in adults aged 30 years and older in the United States in 2014, that were attributable to major, potentially modifiable exposures (cigarette smoking; secondhand smoke; excess body weight; alcohol intake; consumption of red and processed meat; low consumption of fruits/vegetables, dietary fiber, and dietary calcium; physical inactivity; ultraviolet radiation; and 6 cancer-associated infections). The numbers of cancer cases were obtained from the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute; the numbers of deaths were obtained from the CDC; risk factor prevalence estimates were obtained from nationally representative surveys; and associated relative risks of cancer were obtained from published, large-scale pooled analyses or meta-analyses. In the United States in 2014, an estimated 42.0% of all incident cancers (659,640 of 1570,975 cancers, excluding nonmelanoma skin cancers) and 45.1% of cancer deaths (265,150 of 587,521 deaths) were attributable to evaluated risk factors. Cigarette smoking accounted for the highest proportion of cancer cases (19.0%; 298,970 cases) and deaths (28.8%; 169,180 deaths), followed by excess body weight (7.8% and 6.5%, respectively) and alcohol intake (5.6% and 4.0%, respectively). Lung cancer had the highest number of cancers (184,970 cases) and deaths (132,960 deaths) attributable to evaluated risk factors, followed by colorectal cancer (76,910 cases and 28,290 deaths). These results, however, may underestimate the overall proportion of cancers attributable to modifiable factors, because the impact of all established risk factors could not be quantified, and many likely modifiable risk factors are not yet firmly established as causal. Nevertheless, these findings underscore the vast potential for reducing cancer morbidity and mortality through broad and equitable implementation of known preventive measures. CA Cancer J Clin 2018;68:31-54. © 2017 American Cancer Society.

870 citations

Journal ArticleDOI
TL;DR: Increasing or stabilized incidence trends for AC and attenuation of earlier declines for SCC in several subpopulations underscore the importance of intensifying efforts to reverse the increasing trends and further reduce the burden of cervical cancer in the U.S.

88 citations

Journal ArticleDOI
TL;DR: Overall esophageal squamous cell carcinoma incidence rates continuously decreased in both sexes and all racial and ethnic groups, although rates remained stable among younger non‐Hispanic white women, and GNCA rates increased in younger age groups.

80 citations

Journal ArticleDOI
TL;DR: The proportion of cancers attributable to EBW varies among states, but EBW accounts for at least 1 in 17 of all incident cancers in each state, and broad implementation of known community- and individual-level interventions is needed.
Abstract: Importance Excess body weight (EBW) is an established cause of cancer. Despite variations in the prevalence of EBW among US states, there is little information on the EBW-related cancer burden by state; this information would be useful for setting priorities for cancer-control initiatives. Objective To calculate the population attributable fraction (PAF) of incident cancer cases attributable to EBW among adults 30 years or older in 2011 to 2015 in all 50 states and the District of Columbia. Design, Setting, and Participants State-level, self-reported body mass index (BMI [calculated as weight in kilograms divided by height in meters squared]) data from the Behavioral Risk Factor Surveillance System were adjusted by sex, age, race/ethnicity, and education using objectively measured BMI values from the National Health and Nutrition Examination Survey. Age- and sex-specific cancer incidence data by state were obtained from the US Cancer Statistics database. All analyses were performed between February 15, 2018, and July 17, 2018. Main Outcomes and Measures Sex-, age-, and state-specific adjusted prevalence estimates for 4 high BMI categories and corresponding relative risks from large-scale pooled analyses or meta-analyses were used to compute the PAFs for each US state for esophageal adenocarcinoma, multiple myeloma, and cancers of the gastric cardia, colorectum, liver, gallbladder, pancreas, female breast, corpus uteri, ovary, kidney and renal pelvis, and thyroid. Results Each year, an estimated 37 670 cancer cases in men (4.7% of all cancer cases excluding nonmelanoma skin cancers) and 74 690 cancer cases in women (9.6%) 30 years or older in the United States were attributable to EBW from 2011 to 2015. In both men and women, there was at least a 1.5-fold difference in the proportions of cancers attributable to EBW between states with the highest and lowest PAFs. Among men, the PAF ranged from 3.9% (95% CI, 3.6%-4.3%) in Montana to 6.0% (95% CI, 5.6%-6.4%) in Texas. The PAF for women was approximately twice as high as for men, ranging from 7.1% (95% CI, 6.7%-7.6%) in Hawaii to 11.4% (95% CI, 10.7%-12.2%) in the District of Columbia. The largest PAFs were found mostly in southern and midwestern states, as well as Alaska and the District of Columbia. Conclusions and Relevance The proportion of cancers attributable to EBW varies among states, but EBW accounts for at least 1 in 17 of all incident cancers in each state. Broad implementation of known community- and individual-level interventions is needed to reduce access to and marketing of unhealthy foods (eg, through a tax on sugary drinks) and to promote and increase access to healthy foods and physical activity, as well as preventive care.

65 citations

Journal ArticleDOI
TL;DR: The findings indicate large state variation in the economic burden of cancer and suggest the potential for substantial financial benefit through delivery of effective cancer prevention, screening, and treatment to minimize premature cancer mortality in all states.
Abstract: Importance Information on the economic burden of cancer mortality can serve as a tool in setting policies and prioritizing resources for cancer prevention and control. However, contemporary data are lacking for the United States nationally and by state. Objective To estimate lost earnings due to death from cancer overall and for the major cancers in the United States nationally and by state. Design, Setting, and Participants Person-years of life lost (PYLL) were calculated using numbers of cancer deaths and life expectancy data in individuals aged 16 to 84 years who died from cancer in the United States in 2015. The annual median earnings in the United States were used to assign a monetary value for each PYLL by age and sex. Cancer mortality and life expectancy data were obtained from the National Center for Health Statistics and annual median earnings from the US Census Bureau’s 2016 Current Population Survey’s March Annual Social and Economic Supplement. Data analysis was performed from October 22, 2018, to February 25, 2019. Main Outcomes and Measures Lost earnings due to cancer death, represented as estimated future wages in the absence of premature death. Results A total of 8 739 939 person-years of life were lost to cancer death in persons aged 16 to 84 years in the United States in 2015, translating to lost earnings of $94.4 billion (95% CI, $91.7 billion-$97.3 billion). For individual cancer sites, lost earnings were highest for lung cancer ($21.3 billion), followed by colorectal ($9.4 billion), female breast ($6.2 billion), and pancreatic ($6.1 billion) cancer. Age-standardized lost earning rates per 100 000 were lowest in the West and highest in the South, ranging from $19.6 million (95% CI, $19.1 million-$20.2 million) in Utah to $35.3 million ($34.4 million-$36.3 million) in Kentucky. Approximately 2.4 million PYLL and $27.7 billion (95% CI, $26.9 billion-$28.5 billion) in lost earnings (29.3% of total that occurred in 2015) would have been avoided in 2015 if all states had the same age-specific PYLL or lost earning rates as Utah. Conclusions and Relevance Our findings indicate large state variation in the economic burden of cancer and suggest the potential for substantial financial benefit through delivery of effective cancer prevention, screening, and treatment to minimize premature cancer mortality in all states.

53 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions.
Abstract: This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions There will be an estimated 181 million new cancer cases (170 million excluding nonmelanoma skin cancer) and 96 million cancer deaths (95 million excluding nonmelanoma skin cancer) in 2018 In both sexes combined, lung cancer is the most commonly diagnosed cancer (116% of the total cases) and the leading cause of cancer death (184% of the total cancer deaths), closely followed by female breast cancer (116%), prostate cancer (71%), and colorectal cancer (61%) for incidence and colorectal cancer (92%), stomach cancer (82%), and liver cancer (82%) for mortality Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality) Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts CA: A Cancer Journal for Clinicians 2018;0:1-31 © 2018 American Cancer Society

58,675 citations

Journal ArticleDOI
TL;DR: The GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer (IARC) as mentioned in this paper show that female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung cancer, colorectal (11 4.4%), liver (8.3%), stomach (7.7%) and female breast (6.9%), and cervical cancer (5.6%) cancers.
Abstract: This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.

35,190 citations

Journal ArticleDOI
TL;DR: The overall cancer death rate dropped continuously from 1991 to 2016 by a total of 27%, translating into approximately 2,629,200 fewer cancer deaths than would have been expected if death rates had remained at their peak.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2015, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2016, were collected by the National Center for Health Statistics. In 2019, 1,762,450 new cancer cases and 606,880 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2006-2015) was stable in women and declined by approximately 2% per year in men, whereas the cancer death rate (2007-2016) declined annually by 1.4% and 1.8%, respectively. The overall cancer death rate dropped continuously from 1991 to 2016 by a total of 27%, translating into approximately 2,629,200 fewer cancer deaths than would have been expected if death rates had remained at their peak. Although the racial gap in cancer mortality is slowly narrowing, socioeconomic inequalities are widening, with the most notable gaps for the most preventable cancers. For example, compared with the most affluent counties, mortality rates in the poorest counties were 2-fold higher for cervical cancer and 40% higher for male lung and liver cancers during 2012-2016. Some states are home to both the wealthiest and the poorest counties, suggesting the opportunity for more equitable dissemination of effective cancer prevention, early detection, and treatment strategies. A broader application of existing cancer control knowledge with an emphasis on disadvantaged groups would undoubtedly accelerate progress against cancer.

16,028 citations

Journal ArticleDOI
TL;DR: Slow momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers, and it is notable that long‐term rapid increases in liver cancer mortality have attenuated in women and stabilized in men.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2016) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2017) were collected by the National Center for Health Statistics. In 2020, 1,806,590 new cancer cases and 606,520 cancer deaths are projected to occur in the United States. The cancer death rate rose until 1991, then fell continuously through 2017, resulting in an overall decline of 29% that translates into an estimated 2.9 million fewer cancer deaths than would have occurred if peak rates had persisted. This progress is driven by long-term declines in death rates for the 4 leading cancers (lung, colorectal, breast, prostate); however, over the past decade (2008-2017), reductions slowed for female breast and colorectal cancers, and halted for prostate cancer. In contrast, declines accelerated for lung cancer, from 3% annually during 2008 through 2013 to 5% during 2013 through 2017 in men and from 2% to almost 4% in women, spurring the largest ever single-year drop in overall cancer mortality of 2.2% from 2016 to 2017. Yet lung cancer still caused more deaths in 2017 than breast, prostate, colorectal, and brain cancers combined. Recent mortality declines were also dramatic for melanoma of the skin in the wake of US Food and Drug Administration approval of new therapies for metastatic disease, escalating to 7% annually during 2013 through 2017 from 1% during 2006 through 2010 in men and women aged 50 to 64 years and from 2% to 3% in those aged 20 to 49 years; annual declines of 5% to 6% in individuals aged 65 years and older are particularly striking because rates in this age group were increasing prior to 2013. It is also notable that long-term rapid increases in liver cancer mortality have attenuated in women and stabilized in men. In summary, slowing momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers.

15,080 citations

Journal ArticleDOI
TL;DR: In the United States, the cancer death rate has dropped continuously from its peak in 1991 through 2018, for a total decline of 31%, because of reductions in smoking and improvements in early detection and treatment as mentioned in this paper.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2017) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2018) were collected by the National Center for Health Statistics. In 2021, 1,898,160 new cancer cases and 608,570 cancer deaths are projected to occur in the United States. After increasing for most of the 20th century, the cancer death rate has fallen continuously from its peak in 1991 through 2018, for a total decline of 31%, because of reductions in smoking and improvements in early detection and treatment. This translates to 3.2 million fewer cancer deaths than would have occurred if peak rates had persisted. Long-term declines in mortality for the 4 leading cancers have halted for prostate cancer and slowed for breast and colorectal cancers, but accelerated for lung cancer, which accounted for almost one-half of the total mortality decline from 2014 to 2018. The pace of the annual decline in lung cancer mortality doubled from 3.1% during 2009 through 2013 to 5.5% during 2014 through 2018 in men, from 1.8% to 4.4% in women, and from 2.4% to 5% overall. This trend coincides with steady declines in incidence (2.2%-2.3%) but rapid gains in survival specifically for nonsmall cell lung cancer (NSCLC). For example, NSCLC 2-year relative survival increased from 34% for persons diagnosed during 2009 through 2010 to 42% during 2015 through 2016, including absolute increases of 5% to 6% for every stage of diagnosis; survival for small cell lung cancer remained at 14% to 15%. Improved treatment accelerated progress against lung cancer and drove a record drop in overall cancer mortality, despite slowing momentum for other common cancers.

9,661 citations