scispace - formally typeset
Search or ask a question
Author

Aiguo Dai

Bio: Aiguo Dai is an academic researcher from State University of New York System. The author has contributed to research in topics: Precipitation & Climate model. The author has an hindex of 76, co-authored 190 publications receiving 32282 citations. Previous affiliations of Aiguo Dai include National Center for Atmospheric Research & Columbia University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors look at observations and model projections from 1923 to 2010, to test the ability of models to predict future drought conditions, which inspires confidence in their projections of drought.
Abstract: Historical records show increased aridity over many land areas since 1950. This study looks at observations and model projections from 1923 to 2010, to test the ability of models to predict future drought conditions. Models are able to capture the greenhouse-gas forcing and El Nino–Southern Oscillation mode for historical periods, which inspires confidence in their projections of drought.

3,385 citations

Journal ArticleDOI
TL;DR: Wiley et al. as mentioned in this paper reviewed recent literature on the last millennium, followed by an update on global aridity changes from 1950 to 2008, and presented future aridity is presented based on recent studies and their analysis of model simulations.
Abstract: This article reviews recent literature on drought of the last millennium, followed by an update on global aridity changes from 1950 to 2008. Projected future aridity is presented based on recent studies and our analysis of model simulations. Dry periods lasting for years to decades have occurred many times during the last millennium over, for example, North America, West Africa, and East Asia. These droughts were likely triggered by anomalous tropical sea surface temperatures (SSTs), with La Ni˜ na-like SST anomalies leading to drought in North America, and El-Ni˜ no-like SSTs causing drought in East China. Over Africa, the southward shift of the warmest SSTs in the Atlantic and warming in the Indian Ocean are responsible for the recent Sahel droughts. Local feedbacks may enhance and prolong drought. Global aridity has increased substantially since the 1970s due to recent drying over Africa, southern Europe, East and South Asia, and eastern Australia. Although El Ni˜ no-Southern Oscillation (ENSO), tropical Atlantic SSTs, and Asian monsoons have played a large role in the recent drying, recent warming has increased atmospheric moisture demand and likely altered atmospheric circulation patterns, both contributing to the drying. Climate models project increased aridity in the 21 st century over most of Africa, southern Europe and the Middle East, most of the Americas, Australia, and Southeast Asia. Regions like the United States have avoided prolonged droughts during the last 50 years due to natural climate variations, but might see persistent droughts in the next 20–50 years. Future efforts to predict drought will depend on models’ ability to predict tropical SSTs. 2010 JohnWiley &Sons,Ltd.WIREs Clim Change2010 DOI:10.1002/wcc.81

2,651 citations

Journal ArticleDOI
TL;DR: In this article, precipitation intensity, duration, frequency, and phase are as much of concern as total amounts, as these factors determine the disposition of precipitation once it hits the ground and how much runs off.
Abstract: From a societal, weather, and climate perspective, precipitation intensity, duration, frequency, and phase are as much of concern as total amounts, as these factors determine the disposition of precipitation once it hits the ground and how much runs off. At the extremes of precipitation incidence are the events that give rise to floods and droughts, whose changes in occurrence and severity have an enormous impact on the environment and society. Hence, advancing understanding and the ability to model and predict the character of precipitation is vital but requires new approaches to examining data and models. Various mechanisms, storms and so forth, exist to bring about precipitation. Because the rate of precipitation, conditional on when it falls, greatly exceeds the rate of replenishment of moisture by surface evaporation, most precipitation comes from moisture already in the atmosphere at the time the storm begins, and transport of moisture by the storm-scale circulation into the storm is vital....

2,526 citations

Journal ArticleDOI
TL;DR: In this article, a commonly used drought index and observational data are examined to identify the cause of these discrepancies, and the authors indicate that improvements in the quality and coverage of precipitation data and quantification of natural variability are necessary to provide a better understanding of how drought is changing.
Abstract: Recent studies have produced conflicting results about the impacts of climate change on drought. In this Perspective, a commonly used drought index and observational data are examined to identify the cause of these discrepancies. The authors indicate that improvements in the quality and coverage of precipitation data and quantification of natural variability are necessary to provide a better understanding of how drought is changing.

2,144 citations

Journal ArticleDOI
TL;DR: A monthly dataset of Palmer Drought Severity Index (PDSI) from 1870 to 2002 is derived using historical precipitation and temperature data for global land areas on a 2.58 grid as discussed by the authors.
Abstract: A monthly dataset of Palmer Drought Severity Index (PDSI) from 1870 to 2002 is derived using historical precipitation and temperature data for global land areas on a 2.58 grid. Over Illinois, Mongolia, and parts of China and the former Soviet Union, where soil moisture data are available, the PDSI is significantly correlated (r 5 0.5 to 0.7) with observed soil moisture content within the top 1-m depth during warm-season months. The strongest correlation is in late summer and autumn, and the weakest correlation is in spring, when snowmelt plays an important role. Basin-averaged annual PDSI covary closely (r 5 0.6 to 0.8) with streamflow for seven of world’s largest rivers and several smaller rivers examined. The results suggest that the PDSI is a good proxy of both surface moisture conditions and streamflow. An empirical orthogonal function (EOF) analysis of the P ← ]

1,917 citations


Cited by
More filters
01 Jan 2007
TL;DR: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris.
Abstract: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris, Carlos Gay García, Clair Hanson, Hideo Harasawa, Kevin Hennessy, Saleemul Huq, Roger Jones, Lucka Kajfež Bogataj, David Karoly, Richard Klein, Zbigniew Kundzewicz, Murari Lal, Rodel Lasco, Geoff Love, Xianfu Lu, Graciela Magrín, Luis José Mata, Roger McLean, Bettina Menne, Guy Midgley, Nobuo Mimura, Monirul Qader Mirza, José Moreno, Linda Mortsch, Isabelle Niang-Diop, Robert Nicholls, Béla Nováky, Leonard Nurse, Anthony Nyong, Michael Oppenheimer, Jean Palutikof, Martin Parry, Anand Patwardhan, Patricia Romero Lankao, Cynthia Rosenzweig, Stephen Schneider, Serguei Semenov, Joel Smith, John Stone, Jean-Pascal van Ypersele, David Vaughan, Coleen Vogel, Thomas Wilbanks, Poh Poh Wong, Shaohong Wu, Gary Yohe

7,720 citations

Journal ArticleDOI
TL;DR: ERA-40 is a re-analysis of meteorological observations from September 1957 to August 2002 produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) in collaboration with many institutions as mentioned in this paper.
Abstract: ERA-40 is a re-analysis of meteorological observations from September 1957 to August 2002 produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) in collaboration with many institutions. The observing system changed considerably over this re-analysis period, with assimilable data provided by a succession of satellite-borne instruments from the 1970s onwards, supplemented by increasing numbers of observations from aircraft, ocean-buoys and other surface platforms, but with a declining number of radiosonde ascents since the late 1980s. The observations used in ERA-40 were accumulated from many sources. The first part of this paper describes the data acquisition and the principal changes in data type and coverage over the period. It also describes the data assimilation system used for ERA-40. This benefited from many of the changes introduced into operational forecasting since the mid-1990s, when the systems used for the 15-year ECMWF re-analysis (ERA-15) and the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) re-analysis were implemented. Several of the improvements are discussed. General aspects of the production of the analyses are also summarized. A number of results indicative of the overall performance of the data assimilation system, and implicitly of the observing system, are presented and discussed. The comparison of background (short-range) forecasts and analyses with observations, the consistency of the global mass budget, the magnitude of differences between analysis and background fields and the accuracy of medium-range forecasts run from the ERA-40 analyses are illustrated. Several results demonstrate the marked improvement that was made to the observing system for the southern hemisphere in the 1970s, particularly towards the end of the decade. In contrast, the synoptic quality of the analysis for the northern hemisphere is sufficient to provide forecasts that remain skilful well into the medium range for all years. Two particular problems are also examined: excessive precipitation over tropical oceans and a too strong Brewer-Dobson circulation, both of which are pronounced in later years. Several other aspects of the quality of the re-analyses revealed by monitoring and validation studies are summarized. Expectations that the ‘second-generation’ ERA-40 re-analysis would provide products that are better than those from the firstgeneration ERA-15 and NCEP/NCAR re-analyses are found to have been met in most cases. © Royal Meteorological Society, 2005. The contributions of N. A. Rayner and R. W. Saunders are Crown copyright.

7,110 citations

Journal ArticleDOI
TL;DR: The Global Precipitation Climatology Project (GPCP) version 2 Monthly Precise Analysis as discussed by the authors is a merged analysis that incorporates precipitation estimates from low-orbit satellite microwave data, geosynchronous-orbit-satellite infrared data, and rain gauge observations.
Abstract: The Global Precipitation Climatology Project (GPCP) Version 2 Monthly Precipitation Analysis is described. This globally complete, monthly analysis of surface precipitation at 2.5 degrees x 2.5 degrees latitude-longitude resolution is available from January 1979 to the present. It is a merged analysis that incorporates precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit-satellite infrared data, and rain gauge observations. The merging approach utilizes the higher accuracy of the low-orbit microwave observations to calibrate, or adjust, the more frequent geosynchronous infrared observations. The data set is extended back into the premicrowave era (before 1987) by using infrared-only observations calibrated to the microwave-based analysis of the later years. The combined satellite-based product is adjusted by the raingauge analysis. This monthly analysis is the foundation for the GPCP suite of products including those at finer temporal resolution, satellite estimate, and error estimates for each field. The 23-year GPCP climatology is characterized, along with time and space variations of precipitation.

4,951 citations

Journal ArticleDOI
01 May 1981
TL;DR: This chapter discusses Detecting Influential Observations and Outliers, a method for assessing Collinearity, and its applications in medicine and science.
Abstract: 1. Introduction and Overview. 2. Detecting Influential Observations and Outliers. 3. Detecting and Assessing Collinearity. 4. Applications and Remedies. 5. Research Issues and Directions for Extensions. Bibliography. Author Index. Subject Index.

4,948 citations

Journal ArticleDOI
TL;DR: The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010 as mentioned in this paper, which was designed and executed as a global, high-resolution coupled atmosphere-ocean-land surface-sea ice system to provide the best estimate of the state of these coupled domains over this period.
Abstract: The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010. The CFSR was designed and executed as a global, high-resolution coupled atmosphere–ocean–land surface–sea ice system to provide the best estimate of the state of these coupled domains over this period. The current CFSR will be extended as an operational, real-time product into the future. New features of the CFSR include 1) coupling of the atmosphere and ocean during the generation of the 6-h guess field, 2) an interactive sea ice model, and 3) assimilation of satellite radiances by the Gridpoint Statistical Interpolation (GSI) scheme over the entire period. The CFSR global atmosphere resolution is ~38 km (T382) with 64 levels extending from the surface to 0.26 hPa. The global ocean's latitudinal spacing is 0.25° at the equator, extending to a global 0.5° beyond the tropics, with 40 levels to a depth of 4737 m. The global land surface model has four soil levels and the global sea ice m...

4,520 citations