scispace - formally typeset
Search or ask a question
Author

Aileen E. Boyd

Bio: Aileen E. Boyd is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Active site & Binding site. The author has an hindex of 8, co-authored 9 publications receiving 1735 citations. Previous affiliations of Aileen E. Boyd include University of California, Los Angeles.

Papers
More filters
Journal ArticleDOI
TL;DR: The GFP originally cloned from the jellyfish Aequorea victoria has several nonoptimal properties including low brightness, a significant delay between protein synthesis and fluorescence development, and complex photoisomerization, but can be re-engineered by mutagenesis to ameliorate these deficiencies and shift the excitation and emission wavelengths, creating different colors and new applications.

1,550 citations

Journal ArticleDOI
TL;DR: The data demonstrate that the kinetics and interconversion of the enantiomers of ketorolac is different in animals and humans as well as from most other NSAIDs.
Abstract: It has been shown that the analgesic and cyclooxygenase inhibitor activity of ketorolac tromethamine (KT), which is marketed as the racemic mixture of (-)S and (+)R enantiomers, resides primarily with (-)S ketorolac and that the ulcerogenic activity of this agent also resides in (-)S ketorolac. Resolution of individual enantiomers for analysis in plasma samples has been accomplished by two methods: derivatization to form diastereomers that are separated by HPLC, or direct HPLC using a chiral phase column. When mice and rats were given oral solutions of (-)S and (+) KT, it was found that the kinetics and interconversion of the enantiomers were species and dose dependent. Interconversion was higher in mice than in rats; when (-)S KT was administered, 71% of the area under the concentration-time curve (AUC) was due to (+)R ketorolac in mice, compared with 12% in rats. More interconversion was observed at higher doses; the percent of AUC due to (-)S ketorolac when (+)R KT was administered increased from 12% to 25% in mice and from 2% to 8% in rats. In general, more interconversion occurred from (-)S to (+)R ketorolac in the animal studies. Human subjects were given single oral solution doses of racemic KT (30 mg), (-)S KT (15 mg), and (+)R KT (15 mg). The plasma concentrations of (-)S ketorolac were lower than (+)R ketorolac at all sample times after racemic KT (22% of the AUC was due to (-)S ketorolac). When (+)R KT was administered, (-)S ketorolac was not detectable and interconversion was essentially 0%. When (-)S KT was administered, significant levels of (+)R ketorolac were detectable and interconversion was 6.5%. After all doses, plasma half-life was shorter and clearance greater for (-)S ketorolac than for (+)R ketorolac. Thus, in humans very little or no interconversion of (+)R to (-)S was observed, and interconversion of (-)S to (+)R was minimal (6.5%). These data demonstrate that the kinetics and interconversion of the enantiomers of ketorolac is different in animals and humans as well as from most other NSAIDs. This may be due to more rapid excretion or metabolism of (-)S ketorolac and a different mechanism of interconversion.

55 citations

Journal ArticleDOI
TL;DR: Combined kinetic and spectroscopic analyses provide strong evidence that conformational changes of the Ω loop accompany ligand binding.

41 citations

Journal ArticleDOI
TL;DR: Findings raise the possibility that a component of the coulombic attraction stabilizing the binding of agonists comes from the aspartyl residue at position 152 in the α-subunit.

31 citations

Journal ArticleDOI
TL;DR: Combined spectroscopic and kinetic analyses reveal distinguishing characteristics in various regions of acetylcholinesterase that influence ligand association.

29 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In just three years, the green fluorescent protein from the jellyfish Aequorea victoria has vaulted from obscurity to become one of the most widely studied and exploited proteins in biochemistry and cell biology.
Abstract: In just three years, the green fluorescent protein (GFP) from the jellyfish Aequorea victoria has vaulted from obscurity to become one of the most widely studied and exploited proteins in biochemistry and cell biology. Its amazing ability to generate a highly visible, efficiently emitting internal fluorophore is both intrinsically fascinating and tremendously valuable. High-resolution crystal structures of GFP offer unprecedented opportunities to understand and manipulate the relation between protein structure and spectroscopic function. GFP has become well established as a marker of gene expression and protein targeting in intact cells and organisms. Mutagenesis and engineering of GFP into chimeric proteins are opening new vistas in physiological indicators, biosensors, and photochemical memories.

5,954 citations

PatentDOI
17 Aug 1998-Gene
TL;DR: In this article, three classes of GFP mutants having single excitation maxima around 488 nm are shown to be brighter than wild-type GFP following 488-nm excitation.

3,093 citations

Journal ArticleDOI
06 Sep 1996-Science
TL;DR: The green fluorescent protein (GFP) from the Pacific Northwest jellyfish Aequorea victoria has generated intense interest as a marker for gene expression and localization of gene products.
Abstract: The green fluorescent protein (GFP) from the Pacific Northwest jellyfish Aequorea victoria has generated intense interest as a marker for gene expression and localization of gene products. The chromophore, resulting from the spontaneous cyclization and oxidation of the sequence -Ser65 (or Thr65)-Tyr66-Gly67-, requires the native protein fold for both formation and fluorescence emission. The structure of Thr65 GFP has been determined at 1.9 angstrom resolution. The protein fold consists of an 11-stranded beta barrel with a coaxial helix, with the chromophore forming from the central helix. Directed mutagenesis of one residue adjacent to the chromophore, Thr203, to Tyr or His results in significantly red-shifted excitation and emission maxima.

2,232 citations

Journal ArticleDOI
TL;DR: Advances include the continued development of 'passive' markers for the measurement of biomolecule expression and localization in live cells, and 'active' indicators for monitoring more complex cellular processes such as small-molecule-messenger dynamics, enzyme activation and protein–protein interactions.
Abstract: Fluorescent probes are one of the cornerstones of real-time imaging of live cells and a powerful tool for cell biologists. They provide high sensitivity and great versatility while minimally perturbing the cell under investigation. Genetically-encoded reporter constructs that are derived from fluorescent proteins are leading a revolution in the real-time visualization and tracking of various cellular events. Recent advances include the continued development of 'passive' markers for the measurement of biomolecule expression and localization in live cells, and 'active' indicators for monitoring more complex cellular processes such as small-molecule-messenger dynamics, enzyme activation and protein-protein interactions.

1,895 citations

PatentDOI
TL;DR: This demonstration indicated that GFP could be used as a marker of gene expression and protein localization in living and fixed tissues and variations with more intense fluorescence or alterations in the excitation and emission spectra have been produced.
Abstract: This invention provides a cell comprising a DNA molecule having a regulatory element from a gene, other than a gene encoding a green fluorescent protein operatively linked to a DNA sequence encoding the green fluorescent protein. This invention also provides living organisms which comprise the above-described cell. This invention also provides a method for selecting cells expressing a protein of interest which comprises: a) introducing into the cells a DNAI molecule having DNA sequence encoding the protein of interest and DNAII molecule having DNA sequence encoding a green fluorescent protein; b) culturing the introduced cells under conditions permitting expression of the green fluorescent protein and the protein of interest; and c) selecting the cultured cells which express green fluorescent protein, thereby selecting cells expressing the protein of interest. Finally, this invention provides various uses of a green fluorescent protein.

1,773 citations