scispace - formally typeset
Search or ask a question
Author

Aimad Saib

Bio: Aimad Saib is an academic researcher from Université catholique de Louvain. The author has contributed to research in topics: Microstrip & Circulator. The author has an hindex of 10, co-authored 20 publications receiving 696 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new shielding and absorbing composite based on carbon nanotubes (CNTs) dispersed inside a polymer dielectric material was presented, which achieved a conduction level of 1 S/m for only 0.35 wt % of a CNT.
Abstract: In this paper, we present a new shielding and absorbing composite based on carbon nanotubes (CNTs) dispersed inside a polymer dielectric material. The extremely high aspect ratio of CNTs and their remarkable conductive properties lead to good absorbing properties with very low concentrations. A broadband characterization technique is used to measure the microwave electrical properties of CNT composites. It is shown that a conduction level of 1 S/m is reached for only 0.35 wt % of a CNT, while, for a classical absorbing composite based on carbon black, 20% concentration is mandatory. The conductive properties are explained by a phenomenological electrical model and successfully correlated with rheological data aiming at monitoring the dispersion of conductive inclusions in polymer matrices

185 citations

Journal ArticleDOI
TL;DR: In this paper, multiwalled carbon nanotubes with two different diameters were dispersed within poly( is an element of caprolactone) (PCL) by melt-blending and coprecipitation, respectively, with the purpose to impart good electromagnetic interference shielding properties to the polyester.
Abstract: Multiwalled carbon nanotubes (MWNTs) with two different diameters were dispersed within poly( is an element of-caprolactone) (PCL) by melt-blending and coprecipitation, respectively, with the purpose to impart good electromagnetic interference shielding properties to the polyester. Transmission electron microscopy showed that the MWNTs were uniformly dispersed as single nanotubes within the matrix. Because the nanotubes were broken down during melt-blending, the percolation threshold was observed at a lower filler content in the case of coprecipitation. Substitution of poly(ethylene-co-octene), poly( vinyl chloride), polypropylene, and polystyrene for PCL resulted in a much lower shielding efficiency. Finally, polycarbonate and poly( methyl methacrylate) appeared as promising substitutes for PCL, suggesting that pi-pi interactions between the nanotubes and constitutive carbonyl units of the polymers would be beneficial to the dispersion and ultimately to the electrical properties of the nanocomposites.

136 citations

Proceedings ArticleDOI
01 Jan 2005
TL;DR: In this article, a shielding and absorbing composite based on carbon nanotubes (CNT) dispersed inside a polymer dielectric material is presented, and a broadband characterization technique is used to measure the microwave electrical properties of CNT composites.
Abstract: In this paper, we present a shielding and absorbing composite based on carbon nanotubes (CNT) dispersed inside a polymer dielectric material. The extremely high aspect ratio of CNTs and their remarkable conductive properties lead to good absorbing properties with very low concentrations. A broadband characterization technique is used to measure the microwave electrical properties of CNT composites. It is shown that a conduction level of 1 S/m is reached for only 0.35 % weight percent of CNT, while for a classical absorbing composite based on carbon black 20 % concentration is mandatory.

119 citations

Journal ArticleDOI
13 Jun 2005
TL;DR: In this article, a planar fully integrated circulator operating at millimeter wavelength has been designed using a magnetic substrate combining a polymer membrane with an array of ferromagnetic nanowires.
Abstract: A very compact planar fully integrated circulator operating at millimeter wavelength has been designed using a magnetic substrate combining a polymer membrane with an array of ferromagnetic nanowires. The original feature of this substrate, called magnetic nanowired substrate (MNWS), relies on the fact that the circulation effect is obtained without requiring any biasing dc magnetic field. This leads to a significant reduction of device dimensions since no magnetic field source is needed, and a realistic ability for integration with monolithic microwave integrated circuits. The circulator design is performed by an efficient analytical model including a self design of the impedance matching network. This model also allows a physical understanding of the circulation mechanism through the access to the electromagnetic field patterns inside the circulator substrate. Based on the excellent agreement between the theoretical and experimental results, the model is used to predict the improvement of circulator performances resulting from a reduction of dielectric and conductor losses. Insertion losses lower than 2 dB with an isolation higher than 45 dB are expected for MNWS circulators with a low-loss substrate and thick metallic layers.

75 citations

Journal ArticleDOI
TL;DR: In this article, the magnetic band gap is induced by the presence of a ferromagnetic resonance effect in the vicinity of the band gap in microwave photonic band-gap materials.
Abstract: We present an experimental investigation of a class of microwave photonic band-gap (PBG) materials, in which the magnetic permeability μ varies periodically within the material. This material is fabricated using a periodic arrangement of arrays of magnetic nanowires. As for dielectric or metallic PBG, the band-gap behavior varies with the geometrical parameters fixing the spatial periodicity of the magnetic structure. The magnetic photonic band gap is induced by the presence of a ferromagnetic resonance effect in the vicinity of the band gap.

69 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a perspective on the experimental efforts toward the development of microwave absorbers composed of carbonaceous inclusions in a polymer matrix is presented. But the authors focus on the application for which the absorber is intended, weight reduction and optimization of the operating bandwidth are two important issues.
Abstract: Carbon (C) is a crucial material for many branches of modern technology. A growing number of demanding applications in electronics and telecommunications rely on the unique properties of C allotropes. The need for microwave absorbers and radar-absorbing materials is ever growing in military applications (reduction of radar signature of aircraft, ships, tanks, and targets) as well as in civilian applications (reduction of electromagnetic interference among components and circuits, reduction of the back-radiation of microstrip radiators). Whatever the application for which the absorber is intended, weight reduction and optimization of the operating bandwidth are two important issues. A composite absorber that uses carbonaceous particles in combination with a polymer matrix offers a large flexibility for design and properties control, as the composite can be tuned and optimized via changes in both the carbonaceous inclusions (C black, C nanotube, C fiber, graphene) and the embedding matrix (rubber, thermoplastic). This paper offers a perspective on the experimental efforts toward the development of microwave absorbers composed of carbonaceous inclusions in a polymer matrix. The absorption properties of such composites can be tailored through changes in geometry, composition, morphology, and volume fraction of the filler particles. Polymercomposites filled with carbonaceous particles provide a versatile system to probe physical properties at the nanoscale of fundamental interest and of relevance to a wide range of potential applications that span radar absorption, electromagnetic protection from natural phenomena (lightning), shielding for particle accelerators in nuclear physics, nuclear electromagnetic pulse protection, electromagnetic compatibility for electronic devices, high-intensity radiated field protection, anechoic chambers, and human exposure mitigation. Carbonaceous particles are also relevant to future applications that require environmentally benign and mechanically flexible materials.

1,026 citations

Journal ArticleDOI
TL;DR: This work provides a promising methodology to fabricate tough and lightweight graphene-PMMA nanocomposite micro cellular foams with superior electrical and EMI shielding properties by simultaneously combining the functionality and reinforcement of the graphene sheets and the toughening effect of the microcellular cells.
Abstract: Functional polymethylmethacrylate (PMMA)/graphene nanocomposite microcellular foams were prepared by blending of PMMA with graphene sheets followed by foaming with subcritical CO2 as an environmentally benign foaming agent. The addition of graphene sheets endows the insulating PMMA foams with high electrical conductivity and improved electromagnetic interference (EMI) shielding efficiency with microwave absorption as the dominant EMI shielding mechanism. Interestingly, because of the presence of the numerous microcellular cells, the graphene−PMMA foam exhibits greatly improved ductility and tensile toughness compared to its bulk counterpart. This work provides a promising methodology to fabricate tough and lightweight graphene−PMMA nanocomposite microcellular foams with superior electrical and EMI shielding properties by simultaneously combining the functionality and reinforcement of the graphene sheets and the toughening effect of the microcellular cells.

954 citations

Journal ArticleDOI
TL;DR: A review of the state-of-the-art research in the design and characterization of polymer/carbon based composites as EMI shielding materials can be found in this paper.
Abstract: The extensive development of electronic systems and telecommunications has lead to major concerns regarding electromagnetic pollution. Motivated by environmental questions and by a wide variety of applications, the quest for materials with high efficiency to mitigate electromagnetic interferences (EMI) pollution has become a mainstream field of research. This paper reviews the state-of-the-art research in the design and characterization of polymer/carbon based composites as EMI shielding materials. After a brief introduction, in Section 1, the electromagnetic theory will be briefly discussed in Section 2 setting the foundations of the strategies to be employed to design efficient EMI shielding materials. These materials will be classified in the next section by the type of carbon fillers, involving carbon black, carbon fiber, carbon nanotubes and graphene. The importance of the dispersion method into the polymer matrix (melt-blending, solution processing, etc.) on the final material properties will be discussed. The combination of carbon fillers with other constituents such as metallic nanoparticles or conductive polymers will be the topic of Section 4. The final section will address advanced complex architectures that are currently studied to improve the performances of EMI materials and, in some cases, to impart additional properties such as thermal management and mechanical resistance. In all these studies, we will discuss the efficiency of the composites/devices to absorb and/or reflect the EMI radiation.

949 citations

Journal ArticleDOI
TL;DR: A broad review on the recent advances in the research and development of biobased plastics and bionanocomposites that are used in various applications such as packaging, durable goods, electronics and biomedical uses is presented in this paper.

863 citations

Journal ArticleDOI
TL;DR: This topical review addresses materials with a periodic modulation of magnetic parameters that give rise to artificially tailored band structures and allow unprecedented control of spin waves in microand nanostructured ferromagnetic materials.
Abstract: Research efforts addressing spin waves (magnons) in micro- and nanostructured ferromagnetic materials have increased tremendously in recent years. Corresponding experimental and theoretical work in magnonics faces significant challenges in that spin-wave dispersion relations are highly anisotropic and different magnetic states might be realized via, for example, the magnetic field history. At the same time, these features offer novel opportunities for wave control in solids going beyond photonics and plasmonics. In this topical review we address materials with a periodic modulation of magnetic parameters that give rise to artificially tailored band structures and allow unprecedented control of spin waves. In particular, we discuss recent achievements and perspectives of reconfigurable magnonic devices for which band structures can be reprogrammed during operation. Such characteristics might be useful for multifunctional microwave and logic devices operating over a broad frequency regime on either the macro- or nanoscale.

535 citations