scispace - formally typeset
Search or ask a question
Author

Aisha Shigna

Bio: Aisha Shigna is an academic researcher. The author has contributed to research in topics: Targeted drug delivery. The author has an hindex of 1, co-authored 1 publications receiving 2 citations.

Papers
More filters
Journal ArticleDOI
09 Jun 2021
TL;DR: In this paper, the authors highlight different types of nano-based delivery strategies for engineering nano-RNAi-based bio drugs and highlight the insights gained from current research that are entering the preclinical evaluation and information about initial clinical developments, shaping the future for next generation cancer therapeutics.
Abstract: Cancer is a significant health hazard of the 21st century, and GLOBOCAN predicts increasing cancer incidence in the coming decades. Though several conventional treatment modalities exist, most of them end up causing off-target and debilitating effects, and drug resistance acquisition. Advances in our understanding of tumor molecular biology offer alternative strategies for precise, robust, and potentially less toxic treatment paradigms for circumventing the disease at the cellular and molecular level. Several deregulated molecules associated with tumorigenesis have been developed as targets in RNA interference (RNAi) based cancer therapeutics. RNAi, a post-transcriptional gene regulation mechanism, has significantly gained attention because of its precise multi-targeted gene silencing. Although the RNAi approach is favorable, the direct administration of small oligonucleotides has not been fruitful because of their inherent lower half-lives and instability in the biological systems. Moreover, the lack of an appropriate delivery system to the primary site of the tumor that helps determine the potency of the drug and its reach, has limited the effective medical utilization of these bio-drugs. Nanotechnology, with its unique characteristics of enhanced permeation and better tumor-targeting efficiency, offers promising solutions owing to the various possibilities and amenability for modifications of the nanoparticles to augment cancer therapeutics. Nanoparticles could be made multimodal, by designing and synthesizing multiple desired functionalities, often resulting in unique and potentially applicable biological structures. A small number of Phase 1 clinical trials with systemically administered siRNA molecules conjugated with nanoparticles have been completed and the results are promising, indicating that, these new combinatorial therapies can successfully and safely be used to inhibit target genes in cancer patients to alleviate some of the disease burden. In this review, we highlight different types of nano-based delivery strategies for engineering Nano-RNAi-based bio drugs. Furthermore, we have highlighted the insights gained from current research that are entering the preclinical evaluation and information about initial clinical developments, shaping the future for next generation cancer therapeutics.

13 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review the latest advances that could pave the way for a quick lab-to-field transition for RNA sprays, which, as safe, selective, broadly applicable, and cost-effective biopesticides, represent an innovation in sustainable crop production.
Abstract: The drastic loss of biodiversity has alarmed the public and raised sociopolitical demand for chemical pesticide-free plant production, which is now treated by governments worldwide as a top priority. Given this global challenge, RNAi-based technologies are rapidly evolving as a promising substitute to conventional chemical pesticides. Primarily, genetically modified (GM) crops expressing double-stranded (ds)RNA-mediating gene silencing of foreign transcripts have been developed. However, since the cultivation of GM RNAi crops is viewed negatively in numerous countries, GM-free exogenous RNA spray applications attract tremendous scientific and political interest. The sudden rise in demand for pesticide alternatives has boosted research on sprayable RNA biopesticides, generating significant technological developments and advancing the potential for field applications in the near future. Here we review the latest advances that could pave the way for a quick lab-to-field transition for RNA sprays, which, as safe, selective, broadly applicable, and cost-effective biopesticides, represent an innovation in sustainable crop production. Given these latest advances, we further discuss technological limitations, knowledge gaps in the research, safety concerns and regulatory requirements that need to be considered and addressed before RNA sprays can become a reliable and realistic agricultural approach.

30 citations

Journal ArticleDOI
TL;DR: In this article, a review summarizes the results from different clinical trials of curcumin-based therapeutics in the prevention and treatment of various chronic diseases, including cancer, cardiovascular, metabolic, neurological, inflammatory, and infectious diseases.
Abstract: The last decade has seen an unprecedented rise in the prevalence of chronic diseases worldwide. Different mono-targeted approaches have been devised to treat these multigenic diseases, still most of them suffer from limited success due to the off-target debilitating side effects and their inability to target multiple pathways. Hence a safe, efficacious, and multi-targeted approach is the need for the hour to circumvent these challenging chronic diseases. Curcumin, a natural compound extracted from the rhizomes of Curcuma longa, has been under intense scrutiny for its wide medicinal and biological properties. Curcumin is known to manifest antibacterial, antiinflammatory, antioxidant, antifungal, antineoplastic, antifungal, and proapoptotic effects. A plethora of literature has already established the immense promise of curcuminoids in the treatment and clinical management of various chronic diseases like cancer, cardiovascular, metabolic, neurological, inflammatory, and infectious diseases. To date, more than 230 clinical trials have opened investigations to understand the pharmacological aspects of curcumin in human systems. Still, further randomized clinical studies in different ethnic populations warrant its transition to a marketed drug. This review summarizes the results from different clinical trials of curcumin-based therapeutics in the prevention and treatment of various chronic diseases.

20 citations

Journal ArticleDOI
TL;DR: In this paper , the authors discuss and highlight the recent findings concerning the different classes of RA therapies including the conventional and modern drug therapies, as well as the recent emerging options including the phyto-cannabinoid and cell-and RNA-based therapies.

15 citations

Journal ArticleDOI
TL;DR: In this paper , the authors developed and pre-clinical validation of curcumin-chitosan-loaded: eudragit-coated nanocomposites conjugated with Ephb4 shRNA as a feasible bio-drug to suppress breast and colon cancers.
Abstract: Cancer is a debilitating disease and one of the leading causes of death in the world. In spite of the current clinical management being dependent on applying robust pathological variables and well-defined therapeutic strategies, there is an imminent need for novel and targeted therapies with least side effects. RNA interference (RNAi) has gained attention due to its precise potential for targeting multiple genes involved in cancer progression. Nanoparticles with their enhanced permeability and retention (EPR) effect have been found to overcome the limitations of RNAi-based therapies. With their high transportation capacity, nanocarriers can target RNAi molecules to tumor tissues and protect them from enzymatic degradation. Accumulating evidence has shown that tyrosine kinase Ephb4 is overexpressed in various cancers. Therefore, we report here the development and pre-clinical validation of curcumin-chitosan-loaded: eudragit-coated nanocomposites conjugated with Ephb4 shRNA as a feasible bio-drug to suppress breast and colon cancers. The proposed bio-drug is non-toxic and bio-compatible with a higher uptake efficiency and through our experimental results we have demonstrated the effective site-specific delivery of this biodrug and the successfull silencing of their respective target genes in vivo in autochthonous knockout models of breast and colon cancer. While mammary tumors showed a considerable decrease in size, oral administration of the biodrug conjugate to Apc knockout colon models prolonged the animal survival period by six months. Hence, this study has provided empirical proof that the combinatorial approach involving RNA interference and nanotechnology is a promising alliance for next-generation cancer therapeutics.

11 citations

Journal ArticleDOI
TL;DR: In this paper , the abnormal expression of specific circRNAs was correlated with unfavourable clinical characteristics in Cholangiocarcinoma (CCA) and more attention should be given to the roles and mechanisms of circRNUs in CCA.

6 citations