scispace - formally typeset
Search or ask a question
Author

Aixin Sun

Other affiliations: NICTA, Zhengzhou University, National Institute of Education  ...read more
Bio: Aixin Sun is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: Computer science & Web query classification. The author has an hindex of 49, co-authored 255 publications receiving 10251 citations. Previous affiliations of Aixin Sun include NICTA & Zhengzhou University.


Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of recent research efforts on deep learning-based recommender systems is provided in this paper, along with a comprehensive summary of the state-of-the-art.
Abstract: With the growing volume of online information, recommender systems have been an effective strategy to overcome information overload. The utility of recommender systems cannot be overstated, given their widespread adoption in many web applications, along with their potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also to the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. The field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning-based recommender systems. More concretely, we provide and devise a taxonomy of deep learning-based recommendation models, along with a comprehensive summary of the state of the art. Finally, we expand on current trends and provide new perspectives pertaining to this new and exciting development of the field.

1,070 citations

Proceedings ArticleDOI
28 Jul 2013
TL;DR: This paper defines a new problem, namely, the time-aware POI recommendation, to recommend POIs for a given user at a specified time in a day, and develops a collaborative recommendation model that is able to incorporate temporal information.
Abstract: The availability of user check-in data in large volume from the rapid growing location based social networks (LBSNs) enables many important location-aware services to users. Point-of-interest (POI) recommendation is one of such services, which is to recommend places where users have not visited before. Several techniques have been recently proposed for the recommendation service. However, no existing work has considered the temporal information for POI recommendations in LBSNs. We believe that time plays an important role in POI recommendations because most users tend to visit different places at different time in a day, \eg visiting a restaurant at noon and visiting a bar at night. In this paper, we define a new problem, namely, the time-aware POI recommendation, to recommend POIs for a given user at a specified time in a day. To solve the problem, we develop a collaborative recommendation model that is able to incorporate temporal information. Moreover, based on the observation that users tend to visit nearby POIs, we further enhance the recommendation model by considering geographical information. Our experimental results on two real-world datasets show that the proposed approach outperforms the state-of-the-art POI recommendation methods substantially.

731 citations

Journal ArticleDOI
TL;DR: A taxonomy of deep learning-based recommendation models is provided and a comprehensive summary of the state of the art is provided, along with new perspectives pertaining to this new and exciting development of the field.
Abstract: With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.

560 citations

Journal ArticleDOI
TL;DR: A comprehensive review on existing deep learning techniques for NER is provided in this paper, where the authors systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder.
Abstract: Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

474 citations

Proceedings ArticleDOI
29 Nov 2001
TL;DR: In this article, a hierarchical classification method that can classify documents to both leaf and internal categories has been proposed, which considers the degree of misclassification in measuring the classification performance.
Abstract: Hierarchical classification refers to the assignment of one or more suitable categories from a hierarchical category space to a document. While previous work in hierarchical classification focused on virtual category trees where documents are assigned only to the leaf categories, we propose a top-down level-based classification method that can classify documents to both leaf and internal categories. As the standard performance measures assume independence between categories, they have not considered the documents incorrectly classified into categories that are similar to or not far from correct ones in the category tree. We therefore propose category-similarity measures and distance-based measures to consider the degree of misclassification in measuring the classification performance. An experiment has been carried out to measure the performance of our proposed hierarchical classification method. The results showed that our method performs well for a Reuters text collection when enough training documents are given and the new measures have indeed considered the contributions of misclassified documents.

418 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Jan 2002

9,314 citations

Book
08 Jul 2008
TL;DR: This survey covers techniques and approaches that promise to directly enable opinion-oriented information-seeking systems and focuses on methods that seek to address the new challenges raised by sentiment-aware applications, as compared to those that are already present in more traditional fact-based analysis.
Abstract: An important part of our information-gathering behavior has always been to find out what other people think. With the growing availability and popularity of opinion-rich resources such as online review sites and personal blogs, new opportunities and challenges arise as people now can, and do, actively use information technologies to seek out and understand the opinions of others. The sudden eruption of activity in the area of opinion mining and sentiment analysis, which deals with the computational treatment of opinion, sentiment, and subjectivity in text, has thus occurred at least in part as a direct response to the surge of interest in new systems that deal directly with opinions as a first-class object. This survey covers techniques and approaches that promise to directly enable opinion-oriented information-seeking systems. Our focus is on methods that seek to address the new challenges raised by sentiment-aware applications, as compared to those that are already present in more traditional fact-based analysis. We include material on summarization of evaluative text and on broader issues regarding privacy, manipulation, and economic impact that the development of opinion-oriented information-access services gives rise to. To facilitate future work, a discussion of available resources, benchmark datasets, and evaluation campaigns is also provided.

7,452 citations

Proceedings ArticleDOI
03 Apr 2017
TL;DR: This work strives to develop techniques based on neural networks to tackle the key problem in recommendation --- collaborative filtering --- on the basis of implicit feedback, and presents a general framework named NCF, short for Neural network-based Collaborative Filtering.
Abstract: In recent years, deep neural networks have yielded immense success on speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks on recommender systems has received relatively less scrutiny. In this work, we strive to develop techniques based on neural networks to tackle the key problem in recommendation --- collaborative filtering --- on the basis of implicit feedback. Although some recent work has employed deep learning for recommendation, they primarily used it to model auxiliary information, such as textual descriptions of items and acoustic features of musics. When it comes to model the key factor in collaborative filtering --- the interaction between user and item features, they still resorted to matrix factorization and applied an inner product on the latent features of users and items. By replacing the inner product with a neural architecture that can learn an arbitrary function from data, we present a general framework named NCF, short for Neural network-based Collaborative Filtering. NCF is generic and can express and generalize matrix factorization under its framework. To supercharge NCF modelling with non-linearities, we propose to leverage a multi-layer perceptron to learn the user-item interaction function. Extensive experiments on two real-world datasets show significant improvements of our proposed NCF framework over the state-of-the-art methods. Empirical evidence shows that using deeper layers of neural networks offers better recommendation performance.

4,419 citations