scispace - formally typeset
Search or ask a question
Author

Ajay Agarwal

Bio: Ajay Agarwal is an academic researcher from Central Electronics Engineering Research Institute. The author has contributed to research in topics: Silicon & Wafer. The author has an hindex of 27, co-authored 161 publications receiving 4201 citations. Previous affiliations of Ajay Agarwal include Agency for Science, Technology and Research & Council of Scientific and Industrial Research.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, gate-all-around (GAA) n-and p-FETs on a silicon-on-insulator with 5-nm-diameter laterally formed Si nanowire channel were demonstrated.
Abstract: This paper demonstrates gate-all-around (GAA) n- and p-FETs on a silicon-on-insulator with /spl les/ 5-nm-diameter laterally formed Si nanowire channel. Alternating phase shift mask lithography and self-limiting oxidation techniques were utilized to form 140- to 1000-nm-long nanowires, followed by FET fabrication. The devices exhibit excellent electrostatic control, e.g., near ideal subthreshold slope (/spl sim/ 63 mV/dec), low drain-induced barrier lowering (/spl sim/ 10 mV/V), and with I/sub ON//I/sub OFF/ ratio of /spl sim/10/sup 6/. High drive currents of /spl sim/ 1.5 and /spl sim/1.0 mA//spl mu/m were achieved for 180-nm-long nand p-FETs, respectively. It is verified that the threshold voltage of GAA FETs is independent of substrate bias due to the complete electrostatic shielding of the channel body.

605 citations

Journal ArticleDOI
TL;DR: The SiNW array biosensor described here is ultrasensitive, non-radioactive, and more importantly, label-free, and is of particular importance to the development of gene expression profiling tools and point-of-care applications.
Abstract: Arrays of highly ordered n-type silicon nanowires (SiNW) are fabricated using complementary metal-oxide semiconductor (CMOS) compatible technology, and their applications in biosensors are investigated. Peptide nucleic acid (PNA) capture probe-functionalized SiNW arrays show a concentration-dependent resistance change upon hybridization to complementary target DNA that is linear over a large dynamic range with a detection limit of 10 fM. As with other SiNW biosensing devices, the sensing mechanism can be understood in terms of the change in charge density at the SiNW surface after hybridization, the so-called "field effect". The SiNW array biosensor discriminates satisfactorily against mismatched target DNA. It is also able to monitor directly the DNA hybridization event in situ and in real time. The SiNW array biosensor described here is ultrasensitive, non-radioactive, and more importantly, label-free, and is of particular importance to the development of gene expression profiling tools and point-of-care applications.

448 citations

Journal ArticleDOI
TL;DR: To provide a comprehensive understanding of the field effect in silicon nanowire (SiNW) sensors, a systematic approach to fine tune the distance of a charge layer by controlling the hybridization sites of DNA to the SiNW preimmobilized with peptide nucleic acid (PNA) capture probes.
Abstract: To provide a comprehensive understanding of the field effect in silicon nanowire (SiNW) sensors, we take a systematic approach to fine tune the distance of a charge layer by controlling the hybridization sites of DNA to the SiNW preimmobilized with peptide nucleic acid (PNA) capture probes. Six target DNAs of the same length, but differentiated successively by three bases in the complementary segment, are hybridized to the PNA. Fluorescent images show that the hybridization occurs exclusively on the SiNW surface between the target DNAs and the PNA. However, the field-effect response of the SiNW sensor decreases as the DNA (charge layer) moves away from the SiNW surface. Theoretical analysis shows that the field effect of the SiNW sensor relies primarily on the location of the charge layer. A maximum of 102% change in resistance is estimated based on the shortest distance of the DNA charge layer (4.7 A) to the SiNW surface.

286 citations

Journal ArticleDOI
TL;DR: A label-free and direct hybridization assay for ultrasensitive detection of miRNA using silicon nanowires (SiNWs) device has been developed and enables identification of fully matched versus mismatched miRNA sequences.

263 citations

Journal ArticleDOI
TL;DR: The ultrasensitive, label-free, electrical detection of cardiac biomarker in real time using the array sensor is presented and paves the way for the development of a medical diagnostic system for point-of-care application that is able to provide an early and accurate indication of cardiac cellular necrosis.
Abstract: Arrays of highly ordered silicon nanowire (SiNW) clusters are fabricated using complementary metal-oxide semiconductor (CMOS) field effect transistor-compatible technology, and the ultrasensitive, label-free, electrical detection of cardiac biomarker in real time using the array sensor is presented. The successful detection of human cardiac troponin-T (cTnT) has been demonstrated in an assay buffer solution of concentration down to 1 fg/mL, as well as in an undiluted human serum environment of concentration as low as 30 fg/mL. The high specificity, selectivity, and swift response time of the SiNWs to the presence of ultralow concentrations of a target protein in a biological analyte solution, even in the presence of a high total protein concentration, paves the way for the development of a medical diagnostic system for point-of-care application that is able to provide an early and accurate indication of cardiac cellular necrosis.

253 citations


Cited by
More filters
Journal ArticleDOI

3,326 citations

Journal ArticleDOI
TL;DR: Surface enhanced Raman spectroscopy (SERS) is a powerful vibrational spectrograph that allows for highly sensitive structural detection of low concentration analytes through the amplification of electromagnetic fields generated by the excitation of localized surface plasmons.

1,793 citations

Journal ArticleDOI
07 Mar 2008-Sensors
TL;DR: In this article, the most common traditional traditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, and various field-effect transistor based methods are presented along with selected promising novel approaches, including nanowire or magnetic nanoparticle-based biosensing.
Abstract: Quantification of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. However, converting the biological information to an easily processed electronic signal is challenging due to the complexity of connecting an electronic device directly to a biological environment. Electrochemical biosensors provide an attractive means to analyze the content of a biological sample due to the direct conversion of a biological event to an electronic signal. Over the past decades several sensing concepts and related devices have been developed. In this review, the most common traditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, and various field-effect transistor based methods are presented along with selected promising novel approaches, such as nanowire or magnetic nanoparticle-based biosensing. Additional measurement techniques, which have been shown useful in combination with electrochemical detection, are also summarized, such as the electrochemical versions of surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry, quartz crystal microbalance, and scanning probe microscopy. The signal transduction and the general performance of electrochemical sensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches, such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymes into vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities for signal amplification. In particular, this review highlights the importance of the precise control over the delicate interplay between surface nano-architectures, surface functionalization and the chosen sensor transducer principle, as well as the usefulness of complementary characterization tools to interpret and to optimize the sensor response.

1,550 citations

Journal ArticleDOI
TL;DR: This article critically and comprehensively reviews the emerging graphene-based electrochemical sensors, electronic sensors, optical sensors, and nanopore sensors for biological or chemical detection and emphasizes on the underlying detection (or signal transduction) mechanisms.
Abstract: Owing to their extraordinary electrical, chemical, optical, mechanical and structural properties, graphene and its derivatives have stimulated exploding interests in their sensor applications ever since the first isolation of free-standing graphene sheets in year 2004. This article critically and comprehensively reviews the emerging graphene-based electrochemical sensors, electronic sensors, optical sensors, and nanopore sensors for biological or chemical detection. We emphasize on the underlying detection (or signal transduction) mechanisms, the unique roles and advantages of the used graphene materials. Properties and preparations of different graphene materials, their functionalizations are also comparatively discussed in view of sensor development. Finally, the perspective and current challenges of graphene sensors are outlined (312 references).

1,536 citations