scispace - formally typeset
Search or ask a question
Author

Ajay Jasra

Bio: Ajay Jasra is an academic researcher from King Abdullah University of Science and Technology. The author has contributed to research in topics: Particle filter & Markov chain Monte Carlo. The author has an hindex of 31, co-authored 201 publications receiving 6200 citations. Previous affiliations of Ajay Jasra include National University of Singapore & University of Cambridge.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors propose a methodology to sample sequentially from a sequence of probability distributions that are defined on a common space, each distribution being known up to a normalizing constant.
Abstract: Summary. We propose a methodology to sample sequentially from a sequence of probability distributions that are defined on a common space, each distribution being known up to a normalizing constant. These probability distributions are approximated by a cloud of weighted random samples which are propagated over time by using sequential Monte Carlo methods. This methodology allows us to derive simple algorithms to make parallel Markov chain Monte Carlo algorithms interact to perform global optimization and sequential Bayesian estimation and to compute ratios of normalizing constants. We illustrate these algorithms for various integration tasks arising in the context of Bayesian inference.

1,684 citations

Journal ArticleDOI
TL;DR: The solutions to the label switching problem of Markov chain Monte Carlo methods, such as artificial identifiability constraints, relabelling algorithms and label invariant loss functions are reviewed.
Abstract: In the past ten years there has been a dramatic increase of interest in the Bayesian analysis of finite mixture models. This is primarily because of the emergence of Markov chain Monte Carlo (MCMC) methods. While MCMC provides a convenient way to draw inference from complicated statistical models, there are many, perhaps underappreciated, problems associated with the MCMC analysis of mixtures. The problems are mainly caused by the nonidentifiability of the components under symmetric priors, which leads to so-called label switching in the MCMC output. This means that ergodic averages of component specific quantities will be identical and thus useless for inference. We review the solutions to the label switching problem, such as artificial identifiability constraints, relabelling algorithms and label invariant loss functions. We also review various MCMC sampling schemes that have been suggested for mixture models and discuss posterior sensitivity to prior specification.

679 citations

Journal ArticleDOI
TL;DR: An adaptive SMC algorithm is proposed which admits a computational complexity that is linear in the number of samples and adaptively determines the simulation parameters.
Abstract: Approximate Bayesian computation (ABC) is a popular approach to address inference problems where the likelihood function is intractable, or expensive to calculate To improve over Markov chain Monte Carlo (MCMC) implementations of ABC, the use of sequential Monte Carlo (SMC) methods has recently been suggested Most effective SMC algorithms that are currently available for ABC have a computational complexity that is quadratic in the number of Monte Carlo samples (Beaumont et al, Biometrika 86:983---990, 2009; Peters et al, Technical report, 2008; Toni et al, J Roy Soc Interface 6:187---202, 2009) and require the careful choice of simulation parameters In this article an adaptive SMC algorithm is proposed which admits a computational complexity that is linear in the number of samples and adaptively determines the simulation parameters We demonstrate our algorithm on a toy example and on a birth-death-mutation model arising in epidemiology

530 citations

Journal ArticleDOI
TL;DR: A review of population-based simulation for static inference problems, providing numerical examples from Bayesian mixture modelling and sequential Monte Carlo samplers (SMC), providing a comparison of the approaches.
Abstract: In this paper we present a review of population-based simulation for static inference problems. Such methods can be described as generating a collection of random variables {X n } n=1,?,N in parallel in order to simulate from some target density ? (or potentially sequence of target densities). Population-based simulation is important as many challenging sampling problems in applied statistics cannot be dealt with successfully by conventional Markov chain Monte Carlo (MCMC) methods. We summarize population-based MCMC (Geyer, Computing Science and Statistics: The 23rd Symposium on the Interface, pp. 156---163, 1991; Liang and Wong, J. Am. Stat. Assoc. 96, 653---666, 2001) and sequential Monte Carlo samplers (SMC) (Del Moral, Doucet and Jasra, J. Roy. Stat. Soc. Ser. B 68, 411---436, 2006a), providing a comparison of the approaches. We give numerical examples from Bayesian mixture modelling (Richardson and Green, J. Roy. Stat. Soc. Ser. B 59, 731---792, 1997).

228 citations

Journal ArticleDOI
TL;DR: It is demonstrated that it is possible to draw exact inference, in the sense of no time‐discretization error, from the Bayesian SV model.
Abstract: . We investigate simulation methodology for Bayesian inference in Levy-driven stochastic volatility (SV) models. Typically, Bayesian inference from such models is performed using Markov chain Monte Carlo (MCMC); this is often a challenging task. Sequential Monte Carlo (SMC) samplers are methods that can improve over MCMC; however, there are many user-set parameters to specify. We develop a fully automated SMC algorithm, which substantially improves over the standard MCMC methods in the literature. To illustrate our methodology, we look at a model comprised of a Heston model with an independent, additive, variance gamma process in the returns equation. The driving gamma process can capture the stylized behaviour of many financial time series and a discretized version, fit in a Bayesian manner, has been found to be very useful for modelling equity data. We demonstrate that it is possible to draw exact inference, in the sense of no time-discretization error, from the Bayesian SV model.

162 citations


Cited by
More filters
Journal ArticleDOI

6,278 citations

Journal ArticleDOI
TL;DR: Three algorithms for aligning multiple replicate analyses of the same data set using the computer program CLUMPP (CLUster Matching and Permutation Program) are described.
Abstract: Motivation: Clustering of individuals into populations on the basis of multilocus genotypes is informative in a variety of settings. In population-genetic clustering algorithms, such as BAPS, STRUCTURE and TESS, individual multilocus genotypes are partitioned over a set of clusters, often using unsupervised approaches that involve stochastic simulation. As a result, replicate cluster analyses of the same data may produce several distinct solutions for estimated cluster membership coefficients, even though the same initial conditions were used. Major differences among clustering solutions have two main sources: (1) ‘label switching’ of clusters across replicates, caused by the arbitrary way in which clusters in an unsupervised analysis are labeled, and (2) ‘genuine multimodality,’ truly distinct solutions across replicates. Results: To facilitate the interpretation of population-genetic clustering results, we describe three algorithms for aligning multiple replicate analyses of the same data set. We have implemented these algorithms in the computer program CLUMPP (CLUster Matching and Permutation Program). We illustrate the use of CLUMPP by aligning the cluster membership coefficients from 100 replicate cluster analyses of 600 chickens from 20 different breeds. Availability: CLUMPP is freely available at http://rosenberglab.

5,474 citations

01 Apr 2003
TL;DR: The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it as mentioned in this paper, and also presents new ideas and alternative interpretations which further explain the success of the EnkF.
Abstract: The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theoretical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues such as the use of nonlinear measurements, in situ profiles of temperature and salinity, and data which are available with high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias.

2,975 citations

Book ChapterDOI
01 Jan 1998
TL;DR: In this paper, the authors explore questions of existence and uniqueness for solutions to stochastic differential equations and offer a study of their properties, using diffusion processes as a model of a Markov process with continuous sample paths.
Abstract: We explore in this chapter questions of existence and uniqueness for solutions to stochastic differential equations and offer a study of their properties. This endeavor is really a study of diffusion processes. Loosely speaking, the term diffusion is attributed to a Markov process which has continuous sample paths and can be characterized in terms of its infinitesimal generator.

2,446 citations

BookDOI
10 May 2011
TL;DR: A Markov chain Monte Carlo based analysis of a multilevel model for functional MRI data and its applications in environmental epidemiology, educational research, and fisheries science are studied.
Abstract: Foreword Stephen P. Brooks, Andrew Gelman, Galin L. Jones, and Xiao-Li Meng Introduction to MCMC, Charles J. Geyer A short history of Markov chain Monte Carlo: Subjective recollections from in-complete data, Christian Robert and George Casella Reversible jump Markov chain Monte Carlo, Yanan Fan and Scott A. Sisson Optimal proposal distributions and adaptive MCMC, Jeffrey S. Rosenthal MCMC using Hamiltonian dynamics, Radford M. Neal Inference and Monitoring Convergence, Andrew Gelman and Kenneth Shirley Implementing MCMC: Estimating with confidence, James M. Flegal and Galin L. Jones Perfection within reach: Exact MCMC sampling, Radu V. Craiu and Xiao-Li Meng Spatial point processes, Mark Huber The data augmentation algorithm: Theory and methodology, James P. Hobert Importance sampling, simulated tempering and umbrella sampling, Charles J.Geyer Likelihood-free Markov chain Monte Carlo, Scott A. Sisson and Yanan Fan MCMC in the analysis of genetic data on related individuals, Elizabeth Thompson A Markov chain Monte Carlo based analysis of a multilevel model for functional MRI data, Brian Caffo, DuBois Bowman, Lynn Eberly, and Susan Spear Bassett Partially collapsed Gibbs sampling & path-adaptive Metropolis-Hastings in high-energy astrophysics, David van Dyk and Taeyoung Park Posterior exploration for computationally intensive forward models, Dave Higdon, C. Shane Reese, J. David Moulton, Jasper A. Vrugt and Colin Fox Statistical ecology, Ruth King Gaussian random field models for spatial data, Murali Haran Modeling preference changes via a hidden Markov item response theory model, Jong Hee Park Parallel Bayesian MCMC imputation for multiple distributed lag models: A case study in environmental epidemiology, Brian Caffo, Roger Peng, Francesca Dominici, Thomas A. Louis, and Scott Zeger MCMC for state space models, Paul Fearnhead MCMC in educational research, Roy Levy, Robert J. Mislevy, and John T. Behrens Applications of MCMC in fisheries science, Russell B. Millar Model comparison and simulation for hierarchical models: analyzing rural-urban migration in Thailand, Filiz Garip and Bruce Western

2,415 citations