scispace - formally typeset
Search or ask a question
Author

Ajay K. Dalai

Bio: Ajay K. Dalai is an academic researcher from University of Saskatchewan. The author has contributed to research in topics: Catalysis & Biodiesel. The author has an hindex of 72, co-authored 465 publications receiving 22871 citations. Previous affiliations of Ajay K. Dalai include Indian Institute of Technology Roorkee & Energy Biosciences Institute.
Topics: Catalysis, Biodiesel, Biofuel, Syngas, Adsorption


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of cost effective technologies and the processes to convert biomass into useful liquid bio-fuels and bioproducts, with particular focus on some biorefinery concepts based on different feedstocks aiming at the integral utilization of these feedstocks for the production of value added chemicals.
Abstract: Sustainable economic and industrial growth requires safe, sustainable resources of energy. For the future re-arrangement of a sustainable economy to biological raw materials, completely new approaches in research and development, production, and economy are necessary. The ‘first-generation’ biofuels appear unsustainable because of the potential stress that their production places on food commodities. For organic chemicals and materials these needs to follow a biorefinery model under environmentally sustainable conditions. Where these operate at present, their product range is largely limited to simple materials (i.e. cellulose, ethanol, and biofuels). Second generation biorefineries need to build on the need for sustainable chemical products through modern and proven green chemical technologies such as bioprocessing including pyrolysis, Fisher Tropsch, and other catalytic processes in order to make more complex molecules and materials on which a future sustainable society will be based. This review focus on cost effective technologies and the processes to convert biomass into useful liquid biofuels and bioproducts, with particular focus on some biorefinery concepts based on different feedstocks aiming at the integral utilization of these feedstocks for the production of value added chemicals.

2,814 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the methods for the transesterification of waste cooking oil and the performance of biodiesel obtained from waste cooking oils in a commercial diesel engine is presented, and the effects of the products formed in the frying process on biodiesel quality are examined.
Abstract: Biodiesel (fatty acid methyl ester) is a nontoxic and biodegradable alternative fuel that is obtained from renewable sources. A major hurdle in the commercialization of biodiesel from virgin oil, in comparison to petroleum-based diesel fuel, is its cost of manufacturing, primarily the raw material cost. Used cooking oil is one of the economical sources for biodiesel production. However, the products formed during frying, such as free fatty acid and some polymerized triglycerides, can affect the transesterification reaction and the biodiesel properties. Apart from this phenomenon, the biodiesel obtained from waste cooking oil gives better engine performance and less emissions when tested on commercial diesel engines. The present paper attempts to review methods for the transesterification of waste cooking oil and the performance of biodiesel obtained from waste cooking oil in a commercial diesel engine. The paper also examines the basic chemistry involved during frying and the effects of the products formed in the frying process on biodiesel quality.

1,166 citations

Journal ArticleDOI
TL;DR: For different esters from the same vegetable oil, methyl esters were the most volatile, and the volatility decreased as the alkyl group grew bulkier, however, the bio-diesels were considerably less volatile than the conventional diesel fuels.

716 citations

Journal ArticleDOI
TL;DR: In this article, a coprecipitation method was used to form Ni-Me-Al-Mg-O composite, and Ni-Co bimetallic catalysts were prepared for carbon dioxide reforming of methane.

585 citations

Journal ArticleDOI
TL;DR: In this article, the zinc stearate immobilized on silica gel (ZS/Si) was the most effective catalyst in simultaneously catalyzing the transesterification of triglycerides and esterification of free fatty acid (FFA) present in WCO to methyl esters.
Abstract: Various solid acid catalysts were evaluated for the production of biodiesel from low quality oil such as waste cooking oil (WCO) containing 15 wt.% free fatty acids. The zinc stearate immobilized on silica gel (ZS/Si) was the most effective catalyst in simultaneously catalyzing the transesterification of triglycerides and esterification of free fatty acid (FFA) present in WCO to methyl esters. The optimization of reaction parameters with the most active ZS/Si catalyst showed that at 200 °C, 1:18 oil to alcohol molar ratio and 3 wt.% catalysts loading, a maximum ester yield of 98 wt.% could be obtained. The catalysts were recycled and reused many times without any loss in activity.

472 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
Yusuf Chisti1
TL;DR: As demonstrated here, microalgae appear to be the only source of renewable biodiesel that is capable of meeting the global demand for transport fuels.

9,030 citations

Journal ArticleDOI
TL;DR: A review of the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrotechnics, can be found in this paper.
Abstract: Fast pyrolysis utilizes biomass to produce a product that is used both as an energy source and a feedstock for chemical production. Considerable efforts have been made to convert wood biomass to liquid fuels and chemicals since the oil crisis in mid-1970s. This review focuses on the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrolysis. Virtually any form of biomass can be considered for fast pyrolysis. Most work has been performed on wood, because of its consistency and comparability between tests. However, nearly 100 types of biomass have been tested, ranging from agricultural wastes such as straw, olive pits, and nut shells to energy crops such as miscanthus and sorghum. Forestry wastes such as bark and thinnings and other solid wastes, including sewage sludge and leather wastes, have also been studied. In this review, the main (although not exclusive) emphasis has been given to wood. The literature on woo...

4,988 citations

Journal ArticleDOI
TL;DR: In this paper, a review of cost effective technologies and the processes to convert biomass into useful liquid bio-fuels and bioproducts, with particular focus on some biorefinery concepts based on different feedstocks aiming at the integral utilization of these feedstocks for the production of value added chemicals.
Abstract: Sustainable economic and industrial growth requires safe, sustainable resources of energy. For the future re-arrangement of a sustainable economy to biological raw materials, completely new approaches in research and development, production, and economy are necessary. The ‘first-generation’ biofuels appear unsustainable because of the potential stress that their production places on food commodities. For organic chemicals and materials these needs to follow a biorefinery model under environmentally sustainable conditions. Where these operate at present, their product range is largely limited to simple materials (i.e. cellulose, ethanol, and biofuels). Second generation biorefineries need to build on the need for sustainable chemical products through modern and proven green chemical technologies such as bioprocessing including pyrolysis, Fisher Tropsch, and other catalytic processes in order to make more complex molecules and materials on which a future sustainable society will be based. This review focus on cost effective technologies and the processes to convert biomass into useful liquid biofuels and bioproducts, with particular focus on some biorefinery concepts based on different feedstocks aiming at the integral utilization of these feedstocks for the production of value added chemicals.

2,814 citations