scispace - formally typeset
Search or ask a question

Showing papers by "Ajit Mal published in 2009"


Journal ArticleDOI
TL;DR: In this paper, the effects of rigid and liquid inclusions (modeling a calcium deposit and a lipid necrotic core, respectively) in a distensible material (artery wall) on mechanical failure under uniaxial and bao-linear loading in a range of configurations.
Abstract: The role of atherosclerotic calcification in plaque rupture remains controversial. In previous analyses using finite element model analysis, circumferential stress was reduced by the inclusion of a calcium deposit in a representative human anatomical configuration. However, a recent report, also using finite element analysis, suggests that microscopic calcium deposits increase plaque stress. We used mathematical models to predict the effects of rigid and liquid inclusions (modeling a calcium deposit and a lipid necrotic core, respectively) in a distensible material (artery wall) on mechanical failure under uniaxial and biaxial loading in a range of configurations. Without inclusions, stress levels were low and uniform. In the analytical model, peak stresses were elevated at the edges of a rigid inclusion. In the finite element model, peak stresses were elevated at the edges of both inclusions, with minimal sensitivity to the wall distensibility and the size and shape of the inclusion. Presence of both a rigid and a soft inclusion enlarged the region of increased wall stress compared with either alone. In some configurations, the rigid inclusion reduced peak stress at the edge of the soft inclusion but simultaneously increased peak stress at the edge of the rigid inclusion and increased the size of the region affected. These findings suggest that the presence of a calcium deposit creates local increases in failure stress, and, depending on relative position to any neighboring lipid pools, it may increase peak stress and the plaque area at risk of mechanical failure.

99 citations


Journal ArticleDOI
TL;DR: In this paper, a damage index (DI) approach for damage detection and localization based on high frequency wave propagation data and low frequency vibration measurements is presented, using the initial measurements performed on an undamaged structure as baseline, damage indices are evaluated from the comparison of the frequency response of the monitored structure with an unknown damage.

82 citations


01 Jan 2009
TL;DR: The findings suggest that the presence of a calcium deposit creates local increases in failure stress, and, depending on relative position to any neighboring lipid pools, it may increase peak stress and the plaque area at risk of mechanical failure.

9 citations


Proceedings ArticleDOI
TL;DR: In this article, the frequency dependent loss of ultrasonic guided waves for a boron-nitride composite skin sandwiching an aluminum honeycomb was measured using PZTs, with the lowest attenuation observed about 200-250 kHz.
Abstract: Non-destructive testing of critical structural components is time consuming, while necessary for maintaining safe operation. Large aerospace structures, such as the vertical stabilizers of aircraft undergo inspection at regular intervals for damage diagnostics. However, conventional techniques for damage detection and identification before repair can be scheduled are conducted off-line and therefore can take weeks. The use of guided ultrasound waves is being investigated to expedite damage detection in composites. We measure the frequency dependent loss of ultrasonic guided waves for a structure comprising a boron-nitride composite skin sandwiching an aluminum honeycomb. A wide range of ultrasound frequencies propagate as measured using PZTs, with the lowest attenuation observed about 200-250 kHz. These measurements are confirmed using optical fiber Bragg grating arrays used as ultrasound transducers.

4 citations


Proceedings ArticleDOI
TL;DR: A methodology for automatic damage identification and localization is developed using a combination of vibration and wave propagation data and a damage index, calculated from the measured dynamical response of the structure in a previous (reference) state and the current state, is introduced.
Abstract: Advanced composites are being used increasingly in state-of-the-art aircraft and aerospace structures. In spite of their many advantages, composite materials are highly susceptible to hidden flaws that may occur at any time during the life cycle of a structure, and if undetected, may cause sudden and catastrophic failure of the entire structure. This paper is concerned with the detection and characterization of hidden defects in composite structures before they grow to a critical size. A methodology for automatic damage identification and localization is developed using a combination of vibration and wave propagation data. The structure is assumed to be instrumented with an array of actuators and sensors to excite and record its dynamic response, including vibration and wave propagation effects. A damage index, calculated from the measured dynamical response of the structure in a previous (reference) state and the current state, is introduced as a determinant of structural damage. The indices are used to identify low velocity impact damages in increasingly complex composite structural components. The potential application of the approach in developing health monitoring systems in defects-critical structures is indicated.

2 citations