scispace - formally typeset
Search or ask a question
Author

Akaha C. Tse

Bio: Akaha C. Tse is an academic researcher from University of Port Harcourt. The author has contributed to research in topics: Atterberg limits. The author has an hindex of 1, co-authored 1 publications receiving 4 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Tropical red soils which occur in the dry flatlands and plains of the eastern Niger Delta Nigeria were evaluated using combined conventional engineering geological investigation with major oxide geochemistry to determine their properties and evaluate their engineering performance in road construction.
Abstract: Tropical red soils which occur in the dry flatlands and plains of the eastern Niger Delta Nigeria were evaluated using combined conventional engineering geological investigation with major oxide geochemistry to determine their properties and evaluate their engineering performance in road construction. Laboratory test results indicate that the brownish materials are uniformly graded, silty clayey sandy soils. The silica to sesquoxide ratio values of 3 to 4.37 indicate that they are non-lateritic tropically weathered soils. The average values of the specific gravity, liquid limit, plasticity index and shrinkage limits are 2.67, 37%, 10% and 7.6% respectively. They are soils of low to medium plasticity. The unsoaked and soaked CBR values range from 14-38% and 3-9% respectively whereas the average undrained shear strength is 172kN/m 2 . Maximum dry density and optimum moisture content values fall between 1680 to 1880kN/m 2 and 13-16% respectively. Generally the soils classify as A-7-6 to A-2-4 subgroups of the AASHO classification. The overall implication of these composite engineering properties is that the non-lateritic soils rate as poor to fair subgrade materials.

8 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the influence of the water table on the geotechnical properties of lateritic gravels found in a Savannah area in the Centre Cameroon used for road construction was studied.
Abstract: The influence of the water table on the geotechnical properties of lateritic gravels found in a Savannah area in the Centre Cameroon used for road construction was studied. The descriptive statistical analyses show that the values of the geotechnical parameters are more dispersed in humid savannah area than in dry savannah area. The results of the Principal Component Analysis (PCA) and through Agglomerative Hierarchical Clustering (AHC) reveal the existence of three groups of materials, the lateritic gravels of a humid savannah (

13 citations

Journal ArticleDOI
01 Jan 2019
TL;DR: In this article, the authors reconstructed the structural evolution of this tertiary field and the orientations of present-day horizontal stresses determined using a balanced cross-section using well coordinates and wireline logs correlation.
Abstract: In this paper tectonics induced syndepositional tensile fracturing, faulting and block kinematics during structural evolution of this tertiary field has been reconstructed and the orientations of present-day horizontal stresses determined. Balanced cross-section using well coordinates and wireline logs correlation to portray the present-day architecture of the deformed geometry and stratigraphy has indicated two flank faults. The stratigraphic section depicts offlapping cyclic sedimentation in the middle to outer neritic environment during the Oligocene – Miocene epoch. Syndeposional shear displacement of the interconnected fractures in NE – SW and NW – SE fault trends indicate the directions of the maximum horizontal stress and present day maximum horizontal stress orientations determined from compressional shear failures in vertical wellbores depict NE – SW, NW – SE and ENE – WSW dominant directions consistent with the major fracture zones in the Gulf of Guinea along which triple-junction rifting into Nigeria’s Benue trough aulacogen had occurred. Recent increase of earth tremors in Nigeria occurring in the NE – SW, NW – SE and ENE – WSW directions when correlated with the two tectonic episodes, the Aptian/Albian epeirogenic tectonism and the late Miocene – Pliocene faulting together with the presentday stress orientations all align in the axes of the major fracture zones that separated South America from Africa indicates that intraplate tectonic reactivation due to migration of the African plate along the major fracture zones that cut into Nigeria is imminent.

3 citations

Journal Article
TL;DR: In this article, samples of deltaic lateritic soils were subjected to mechanical (with or without controlled sand addition), cement and cement-sand (composite) stabilisation methods to improve strength for improved engineering applications.
Abstract: Deltaic laterite is the most suitable and most widely used soil material for road embankment in the Niger Delta. Usually, its natural characteristics fall short of the minimum requirements for such applications hence it has to be stabilised to improve its properties. In this study, samples of deltaic lateritic soils were subjected to mechanical (with or without controlled sand addition), cement and cement-sand (composite) stabilisation methods to improve strength for improved engineering applications. Mechanical stabilisation was found to satisfy subgrade requirements while the addition of sand produced sub-base material quality at best depending on compacted maximum dry density (MDD), which itself is dependent on the optimum sand content (OSC). The OSC was also shown to affect the optimum moisture content (OMC) and the soaked California bearing ratio (CBR) of stabilised specimens. Combination of the test results produced a graphical model to predict the influence of mechanical stabilisation on the soil materials using the percentage fines (that is, passing through a 75 mm sieve) obtainable from wet sieving. Cement stabilisation of the soil (by indigenous highway standard) produced base-course quality materials with cement content in excess of 12 %, which is economically unviable. However, the addition of controlled proportions of sharp sand (also abundant in the Niger Delta) to the soilcement mixtures produced base-course quality materials with 6 % cement (less than half of that obtained through only cement stabilisation) and about 40 % sand content. A model was also presented to predict the other constituents of sand-cement stabilisation using the percentage fines obtainable from wet sieving.

2 citations

Journal ArticleDOI
TL;DR: In this paper , the authors investigated the performance of Costus lateriflorus bagasse ash and cement composite for stabilization of Laterite and clay soils from Ubeta-Ula-Ubie road in Ahoada West LGA of Rivers state, Nigeria.
Abstract: The study investigated the performance of Costus lateriflorus bagasse ash and cement composite for stabilization of Laterite and clay soils from Ubeta-Ula-Ubie road in Ahoada West LGA of Rivers state, Nigeria. The soil samples were prepared and tested for variations in maximum dry density (MDD), optimum moisture content (OMC), consistency limits, California bearing ratio (CBR) and unconfined compressive strength (UCS), maximum dry density (MDD), liquid limit (LL) and plasticity index (PI) of the stabilized laterite and clay soils decreased with increasing percentage of the bagasse ash composite, while optimum moisture content (OMC), plastic limit (PL) and unconfined compressive strength (UCS) were increased with the proportion of bagasse ash. This study establishes that an appropriate proportion of bagasse ash content in soil stabilization would enhance the properties of soil suitable for pavement and road construction. Comparatively, bagasse ash performed better in Laterite soil than clay soil at optimum proportion of 0.75% and 7.5% cement composition.