scispace - formally typeset
Search or ask a question
Author

Akihiko Hoson

Bio: Akihiko Hoson is an academic researcher from Chubu Electric Power. The author has contributed to research in topics: Titanium oxide & Aqueous solution. The author has an hindex of 4, co-authored 4 publications receiving 3854 citations.

Papers
More filters
Journal ArticleDOI
23 May 1998-Langmuir
TL;DR: In this article, a new route for the synthesis of a nanotube made of titanium oxide is presented, where needle-shaped TiO2 crystals (anatase phase) with a diameter of 8 nm and a length of 100 nm were obtained when sol−gel-derived fine TiO 2-based powders were treated chemically with a 5−10 M NaOH aqueous solution.
Abstract: Nanotubes composed of various materials such as carbon, boron nitride, and oxides have been studied recently. In this report, the discovery of a new route for the synthesis of a nanotube made of titanium oxide is presented. Needle-shaped TiO2 crystals (anatase phase) with a diameter of ≈8 nm and a length of ≈100 nm were obtained when sol−gel-derived fine TiO2-based powders were treated chemically (e.g., for 20 h at 110 °C) with a 5−10 M NaOH aqueous solution. It was found by observation using a transmission electron microscope that the needle-shaped products have a tube structure. The TiO2 nanotubes have a large specific surface area of ≈400 m2·g-1. TiO2 nanotubes obtained in the present work are anticipated to have great potential for use in the preparation of catalysts, adsorbants, and deodorants with high activities, because their specific surface area is greatly increased. If metallic-, inorganic-, or organic-based materials can be inserted into the TiO2 nanotubes, novel characteristics such as electr...

2,335 citations

Journal ArticleDOI
TL;DR: In this paper, a method for the synthesis of needle-shaped titanium oxide (TiO2) nanotubes was proposed. But the method was not suitable for the case of amorphous raw materials, and it required the use of distilled water and HCl aqueous solution.
Abstract: We report a new method for the synthesis of titanium oxide (TiO2) nanotubes. When anatase-phase- or rutile-phase-containing TiO2 was treated with an aqueous solution of 5–10 M NaOH for 20 h at 110 °C and then with HCl aqueous solution and distilled water, needle-shaped TiO2 products were obtained (diameter ≈ 8 nm, length ≈ 100 nm). The needle-shaped products are nanotubes with inner diameters of approximately 5 nm and outer diameters of approximately 8 nm. The formation mechanism of titania nanotubes is discussed in terms of the detailed observation of the products by transmission electron microscopy: the crystalline raw material is first converted to an amorphous product through alkali treatment, and subsequently, titania nanotubes are formed after treatment with distilled water and HCl aqueous solution.

1,490 citations

Journal ArticleDOI
TL;DR: In this paper, a method for the synthesis of needle-shaped titanium oxide (TiO2) nanotubes was proposed. But the method was not suitable for the case of amorphous raw materials, and it required the use of distilled water and HCl aqueous solution.
Abstract: We report a new method for the synthesis of titanium oxide (TiO2) nanotubes. When anatase-phase- or rutile-phase-containing TiO2 was treated with an aqueous solution of 5–10 M NaOH for 20 h at 110 °C and then with HCl aqueous solution and distilled water, needle-shaped TiO2 products were obtained (diameter ≈ 8 nm, length ≈ 100 nm). The needle-shaped products are nanotubes with inner diameters of approximately 5 nm and outer diameters of approximately 8 nm. The formation mechanism of titania nanotubes is discussed in terms of the detailed observation of the products by transmission electron microscopy: the crystalline raw material is first converted to an amorphous product through alkali treatment, and subsequently, titania nanotubes are formed after treatment with distilled water and HCl aqueous solution.

116 citations

Journal ArticleDOI
TL;DR: In this article, the SiO2-doped TiO2 powders were treated chemically with aqueous NaOH and infrared reflection spectra showed that the treatment reduced the amount of SiO 2 in the powders.
Abstract: TiO2-based powders doped with a small amount of SiO2 were prepared by a sol-gel method and subsequently were heated to precipitate fine anatase crystals. Although the obtained powders have large specific surface areas (≈200 m2 · g−1), they showed poorer activity in a photocatalytic property than the undoped TiO2 powders which have the area of 50 m2 · g−1. The SiO2-doped TiO2 powders were treated chemically with aqueous NaOH. Infrared reflection spectra showed that the treatment reduced the amount of SiO2 in the powders. The photocatalytic property of the powders was extremely improved by the treatment, and the powders showed higher activity than the undoped TiO2 powders.

56 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review attempts to cover all aspects, including underlying principles and key functional features of TiO(2), in a comprehensive way and also indicates potential future directions of the field.
Abstract: TiO(2) is one of the most studied compounds in materials science. Owing to some outstanding properties it is used for instance in photocatalysis, dye-sensitized solar cells, and biomedical devices. In 1999, first reports showed the feasibility to grow highly ordered arrays of TiO(2) nanotubes by a simple but optimized electrochemical anodization of a titanium metal sheet. This finding stimulated intense research activities that focused on growth, modification, properties, and applications of these one-dimensional nanostructures. This review attempts to cover all these aspects, including underlying principles and key functional features of TiO(2), in a comprehensive way and also indicates potential future directions of the field.

2,735 citations

Journal ArticleDOI
23 May 1998-Langmuir
TL;DR: In this article, a new route for the synthesis of a nanotube made of titanium oxide is presented, where needle-shaped TiO2 crystals (anatase phase) with a diameter of 8 nm and a length of 100 nm were obtained when sol−gel-derived fine TiO 2-based powders were treated chemically with a 5−10 M NaOH aqueous solution.
Abstract: Nanotubes composed of various materials such as carbon, boron nitride, and oxides have been studied recently. In this report, the discovery of a new route for the synthesis of a nanotube made of titanium oxide is presented. Needle-shaped TiO2 crystals (anatase phase) with a diameter of ≈8 nm and a length of ≈100 nm were obtained when sol−gel-derived fine TiO2-based powders were treated chemically (e.g., for 20 h at 110 °C) with a 5−10 M NaOH aqueous solution. It was found by observation using a transmission electron microscope that the needle-shaped products have a tube structure. The TiO2 nanotubes have a large specific surface area of ≈400 m2·g-1. TiO2 nanotubes obtained in the present work are anticipated to have great potential for use in the preparation of catalysts, adsorbants, and deodorants with high activities, because their specific surface area is greatly increased. If metallic-, inorganic-, or organic-based materials can be inserted into the TiO2 nanotubes, novel characteristics such as electr...

2,335 citations

Journal ArticleDOI
TL;DR: Analysis of photocurrent measurements indicates that the light-harvesting efficiencies of NT-based DSSCs were higher than those found for D SSCs incorporating NPs owing to stronger internal light-scattering effects.
Abstract: We report on the microstructure and dynamics of electron transport and recombination in dye-sensitized solar cells (DSSCs) incorporating oriented TiO2 nanotube (NT) arrays. The morphology of the NT arrays, which were prepared from electrochemically anodized Ti foils, were characterized by scanning and transmission electron microscopies. The arrays were found to consist of closely packed NTs, several micrometers in length, with typical wall thicknesses and intertube spacings of 8−10 nm and pore diameters of about 30 nm. The calcined material was fully crystalline with individual NTs consisting of about 30 nm sized crystallites. The transport and recombination properties of the NT and nanoparticle (NP) films used in DSSCs were studied by frequency-resolved modulated photocurrent/photovoltage spectroscopies. While both morphologies display comparable transport times, recombination was much slower in the NT films, indicating that the NT-based DSSCs have significantly higher charge-collection efficiencies than...

2,008 citations

Journal ArticleDOI
TL;DR: In this paper, the fabrication, properties, and solar energy applications of highly ordered TiO 2 nanotube arrays made by anodic oxidation of titanium in fluoride-based electrolytes are reviewed.

1,905 citations