scispace - formally typeset
Search or ask a question
Author

Akiko Iwasaki

Bio: Akiko Iwasaki is an academic researcher from Yale University. The author has contributed to research in topics: Immune system & Innate immune system. The author has an hindex of 89, co-authored 305 publications receiving 42749 citations. Previous affiliations of Akiko Iwasaki include National Institutes of Health & Howard Hughes Medical Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations

Journal ArticleDOI
TL;DR: Recognition of microbial infection and initiation of host defense responses is controlled by multiple mechanisms and recent studies have provided important clues about the mechanisms of TLR-mediated control of adaptive immunity orchestrated by dendritic cell populations in distinct anatomical locations.
Abstract: Recognition of microbial infection and initiation of host defense responses is controlled by multiple mechanisms. Toll-like receptors (TLRs) have recently emerged as a key component of the innate immune system that detect microbial infection and trigger antimicrobial host defense responses. TLRs activate multiple steps in the inflammatory reactions that help to eliminate the invading pathogens and coordinate systemic defenses. In addition, TLRs control multiple dendritic cell functions and activate signals that are critically involved in the initiation of adaptive immune responses. Recent studies have provided important clues about the mechanisms of TLR-mediated control of adaptive immunity orchestrated by dendritic cell populations in distinct anatomical locations.

4,108 citations

Journal ArticleDOI
TL;DR: A set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes are presented.
Abstract: Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms Recent reviews have described the range of assays that have been used for this purpose(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi) Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response

2,310 citations

Journal ArticleDOI
15 Jan 2010-Science
TL;DR: Questions are discussed including the mechanisms by which pathogen-specific innate immune recognition activates antigen-specific adaptive immune responses and the roles of different types of innate immune Recognition in host defense from infection and injury.
Abstract: Twenty years after the proposal that pattern recognition receptors detect invasion by microbial pathogens, the field of immunology has witnessed several discoveries that have elucidated receptors and signaling pathways of microbial recognition systems and how they control the generation of T and B lymphocyte-mediated immune responses. However, there are still many fundamental questions that remain poorly understood, even though sometimes the answers are assumed to be known. Here, we discuss some of these questions, including the mechanisms by which pathogen-specific innate immune recognition activates antigen-specific adaptive immune responses and the roles of different types of innate immune recognition in host defense from infection and injury.

1,998 citations

Journal ArticleDOI
TL;DR: It is shown that TLR7 recognizes the single-stranded RNA viruses, vesicular stomatitis virus and influenza virus, and insights into the pathways used by the innate immune cells in the recognition of viral pathogens are provided.
Abstract: Viral infection of mammalian host results in the activation of innate immune responses. Toll-like receptors (TLRs) have been shown to mediate the recognition of many types of pathogens, including viruses. The genomes of viruses possess unique characteristics that are not found in mammalian genomes, such as high CpG content and double-stranded RNA. These genomic nucleic acids serve as molecular signatures associated with viral infections. Here we show that TLR7 recognizes the single-stranded RNA viruses, vesicular stomatitis virus and influenza virus. The recognition of these viruses by plasmacytoid dendritic cells and B cells through TLR7 results in their activation of costimulatory molecules and production of cytokines. Moreover, this recognition required intact endocytic pathways. Mice deficient in either the TLR7 or the TLR adaptor protein MyD88 demonstrated reduced responses to in vivo infection with vesicular stomatitis virus. These results demonstrate microbial ligand recognition by TLR7 and provide insights into the pathways used by the innate immune cells in the recognition of viral pathogens.

1,833 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
24 Feb 2006-Cell
TL;DR: New insights into innate immunity are changing the way the way the authors think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.

10,685 citations

Journal ArticleDOI
TL;DR: Recent advances that have been made by research into the role of TLR biology in host defense and disease are described.
Abstract: The discovery of Toll-like receptors (TLRs) as components that recognize conserved structures in pathogens has greatly advanced understanding of how the body senses pathogen invasion, triggers innate immune responses and primes antigen-specific adaptive immunity. Although TLRs are critical for host defense, it has become apparent that loss of negative regulation of TLR signaling, as well as recognition of self molecules by TLRs, are strongly associated with the pathogenesis of inflammatory and autoimmune diseases. Furthermore, it is now clear that the interaction between TLRs and recently identified cytosolic innate immune sensors is crucial for mounting effective immune responses. Here we describe the recent advances that have been made by research into the role of TLR biology in host defense and disease.

7,494 citations

Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The role of PRRs, their signaling pathways, and how they control inflammatory responses are discussed.

6,987 citations

Journal ArticleDOI
TL;DR: Dendritic cells are antigen-presenting cells with a unique ability to induce primary immune responses and may be important for the induction of immunological tolerance, as well as for the regulation of the type of T cell-mediated immune response.
Abstract: Dendritic cells (DCs) are antigen-presenting cells with a unique ability to induce primary immune responses. DCs capture and transfer information from the outside world to the cells of the adaptive immune system. DCs are not only critical for the induction of primary immune responses, but may also be important for the induction of immunological tolerance, as well as for the regulation of the type of T cell-mediated immune response. Although our understanding of DC biology is still in its infancy, we are now beginning to use DC-based immunotherapy protocols to elicit immunity against cancer and infectious diseases.

6,758 citations