scispace - formally typeset
Search or ask a question
Author

Akimi Serizawa

Bio: Akimi Serizawa is an academic researcher from Kyoto University. The author has contributed to research in topics: Two-phase flow & Turbulence. The author has an hindex of 21, co-authored 49 publications receiving 2444 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, two-phase flow patterns are visualized with a microscope for air-water and steam-water flow in circular tubes of 20, 25 and 100 μm i.d.

496 citations

Journal ArticleDOI
TL;DR: In this paper, microstructure was studied experimentally in air-water two-phase bubbly flow flowing upward in a vertical pipe of 60 mm diameter under atmospheric pressure, and the results indicated that over a large portion of fully-developed bubbles, the phases, the velocities of bubbles and water, and ratio between the velo-ities of the phases have fairly flat radial profiles.

337 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the turbulence structure of air-water bubbly flow and describe the principles of measurement and specially developed electronic instrumentation for determining various important local parameters, and the rates of turbulent transport of heat and bubbles in two-phase bubble flow.

271 citations

Journal ArticleDOI
TL;DR: In this paper, the local instantaneous formulation of the interfacial area concentration is introduced, and time and spatial averaged area concentrations are derived, and the local ergodic theorem is obtained for stationary developed two-phase flow based on the two-fluid model.

260 citations

Journal ArticleDOI
TL;DR: In this paper, the basic equations of turbulence in gas-liquid two-phase flow were derived based on the local instant formulation of two phase flow and its averaging, the conservation equations of mass and momentum were obtained for the fluctuating part of the velocity.

203 citations


Cited by
More filters
Dissertation
01 Jan 2003
TL;DR: In this paper, the authors describe the development and validation of Computational Fluid Dynamics (CFD) methodology for the simulation of dispersed two-phase flows, which employs averaged mass and momentum conservation equations to describe the time-dependent motion of both phases.
Abstract: This study describes the development and validation of Computational Fluid Dynamics (CFD) methodology for the simulation of dispersed two-phase flows. A two-fluid (Euler-Euler) methodology previously developed at Imperial College is adapted to high phase fractions. It employs averaged mass and momentum conservation equations to describe the time-dependent motion of both phases and, due to the averaging process, requires additional models for the inter-phase momentum transfer and turbulence for closure. The continuous phase turbulence is represented using a two-equation k − ε−turbulence model which contains additional terms to account for the effects of the dispersed on the continuous phase turbulence. The Reynolds stresses of the dispersed phase are calculated by relating them to those of the continuous phase through a turbulence response function. The inter-phase momentum transfer is determined from the instantaneous forces acting on the dispersed phase, comprising drag, lift and virtual mass. These forces are phase fraction dependent and in this work revised modelling is put forward in order to capture the phase fraction dependency of drag and lift. Furthermore, a correlation for the effect of the phase fraction on the turbulence response function is proposed. The revised modelling is based on an extensive survey of the existing literature. The conservation equations are discretised using the finite-volume method and solved in a solution procedure, which is loosely based on the PISO algorithm, adapted to the solution of the two-fluid model. Special techniques are employed to ensure the stability of the procedure when the phase fraction is high or changing rapidely. Finally, assessment of the methodology is made with reference to experimental data for gas-liquid bubbly flow in a sudden enlargement of a circular pipe and in a plane mixing layer. Additionally, Direct Numerical Simulations (DNS) are performed using an interface-capturing methodology in order to gain insight into the dynamics of free rising bubbles, with a view towards use in the longer term as an aid in the development of inter-phase momentum transfer models for the two-fluid methodology. The direct numerical simulation employs the mass and momentum conservation equations in their unaveraged form and the topology of the interface between the two phases is determined as part of the solution. A novel solution procedure, similar to that used for the two-fluid model, is used for the interface-capturing methodology, which allows calculation of air bubbles in water. Two situations are investigated: bubbles rising in a stagnant liquid and in a shear flow. Again, experimental data are used to verify the computational results.

968 citations

Journal ArticleDOI
TL;DR: In this article, trajectories of single air bubbles in simple shear flows of glycerol-water solution were measured to evaluate transverse lift force acting on single bubbles, and the authors concluded that the critical bubble diameter causing the radial void profile transition from wall peaking to core peaking in an air-water bubbly flow evaluated by the proposed CT correlation coincided with available experimental data.

855 citations

Journal ArticleDOI
TL;DR: In this article, the effects of the channel size on the flow patterns and heat transfer and pressure drop performance are reviewed in small hydraulic diameter channels, and the fundamental questions related to the presence of nucleate boiling and characteristics of flow boiling in microchannels and minichannels in comparison to that in the conventional channel sizes (3 mm and above) are addressed.

840 citations

01 Jan 2002
TL;DR: In this article, the effects of the channel size on the flow patterns and heat transfer and pressure drop performance are reviewed in small hydraulic diameter channels, and the fundamental questions related to the presence of nucleate boiling and characteristics of flow boiling in microchannels and minichannels in comparison to that in the conventional channel sizes (3 mm and above) are addressed.
Abstract: Flow boiling in small hydraulic diameter channels is becoming increasingly important in many diverse applications. The previous studies addressing the effects of the channel size on the flow patterns, and heat transfer and pressure drop performance are reviewed in the present paper. The fundamental questions related to the presence of nucleate boiling and characteristics of flow boiling in microchannels and minichannels in comparison to that in the conventional channel sizes (3 mm and above) are addressed. Also, the effect of heat exchanger configuration—single-channel and multichannel—on the heat transfer and pressure drop performance is reviewed. The areas for future research are identified.

818 citations

Journal ArticleDOI
TL;DR: In this article, the kinematic constitutive equation for the drift velocity has been studied for various two-phase flow regimes, and a comparison of the model with various experimental data over various flow regimes and a wide range of flow parameters shows a satisfactory agreement.

799 citations