scispace - formally typeset
Search or ask a question
Author

Akinobu Nakamura

Bio: Akinobu Nakamura is an academic researcher from Nagoya Institute of Technology. The author has contributed to research in topics: Sewage treatment & Cell signaling. The author has an hindex of 9, co-authored 24 publications receiving 244 citations. Previous affiliations of Akinobu Nakamura include National Institutes of Natural Sciences, Japan & Nagaoka University of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: This work reports a general strategy to create small-molecule fluorescent probes for the nucleus in living cells based on the attachment of the DNA-binding Hoechst compound to a fluorophore of interest.

75 citations

Journal ArticleDOI
TL;DR: It is shown that SLLs bind their target proteins and relocate (tether) them rapidly from the cytoplasm to their targeting sites, thus serving as synthetic protein translocators, thus opening a new direction in the design of small-molecule tools or drugs for cell regulation.
Abstract: Small-molecule ligands that control the spatial location of proteins in living cells would be valuable tools for regulating biological systems. However, the creation of such molecules remains almost unexplored because of the lack of a design methodology. Here we introduce a conceptually new type of synthetic ligands, self-localizing ligands (SLLs), which spontaneously localize to specific subcellular regions in mammalian cells. We show that SLLs bind their target proteins and relocate (tether) them rapidly from the cytoplasm to their targeting sites, thus serving as synthetic protein translocators. SLL-induced protein translocation enables us to manipulate diverse synthetic/endogenous signaling pathways. The method is also applicable to reversible protein translocation and allows control of multiple proteins at different times and locations in the same cell. These results demonstrate the usefulness of SLLs in the spatial (and temporal) control of intracellular protein distribution and biological processes, opening a new direction in the design of small-molecule tools or drugs for cell regulation.

70 citations

Journal ArticleDOI
TL;DR: The genetic and phenotypic properties suggest that strain UasXn-3T represents a novel species, and the name Bacteroides luti sp.
Abstract: A mesophilic, anaerobic, cellulolytic and xylanolytic strain, UasXn-3T, was isolated from anaerobic granular sludge in a mesophilic upflow anaerobic sludge blanket reactor, which was used to treat municipal sewage. The cells were Gram-stain-negative, non-motile, and non-spore-forming rods. The optimal temperature for growth was 37-40 °C and the optimal pH for growth was pH 6.5-7.0. Strain UasXn-3T could grow on several polysaccharides and sugars, including cellulose, cellobiose, xylan, xylose, glucose, fructose, arabinose, mannose, raffinose, trehalose and starch. The DNA G+C content was 44.4 mol%. On the basis of comparative 16S rRNA gene sequence analysis, strain UasXn-3T was identified as a member of the genus Bacteroides and most closely related to Bacteroides oleiciplenus, B. intestinalis, B. cellulosilyticus and B. graminisolvens (sequence similarities of 91.3-91.6%). Since the genetic and phenotypic properties suggest that strain UasXn-3T represents a novel species, we propose the name Bacteroides luti sp. nov. The type strain is UasXn-3T (=JCM 19020T=DSM 26991T).

53 citations

Journal ArticleDOI
TL;DR: Hoechst-tagged fluorescein (hoeFL), which was previously developed as a green fluorescent DNA-staining probe, can be used for this purpose and was applicable to visualize the intranuclear pH of nigericin-treated and intact living human cells by ratiometric fluorescence imaging.

22 citations

Journal ArticleDOI
TL;DR: Orthogonal PM-specific SLIPT systems provide a powerful new platform for multiplexed chemical signal control in living single cells, offering new opportunities for dissecting cell signaling networks and synthetic cell manipulation.
Abstract: Most cell behaviors are the outcome of processing information from multiple signals generated upon cell stimulation. Thus, a systematic understanding of cellular systems requires methods that allow the activation of more than one specific signaling molecule or pathway within a cell. However, the construction of tools suitable for such multiplexed signal control remains challenging. In this work, we aimed to develop a platform for chemically manipulating multiple signaling molecules/pathways in living mammalian cells based on self-localizing ligand-induced protein translocation (SLIPT). SLIPT is an emerging chemogenetic tool that controls protein localization and cell signaling using synthetic self-localizing ligands (SLs). Focusing on the inner leaflet of the plasma membrane (PM), where there is a hub of intracellular signaling networks, here we present the design and engineering of two new PM-specific SLIPT systems based on an orthogonal eDHFR and SNAP-tag pair. These systems rapidly induce translocation of eDHFR- and SNAP-tag-fusion proteins from the cytoplasm to the PM specifically in a time scale of minutes upon addition of the corresponding SL. We then show that the combined use of the two systems enables chemically inducible, individual translocation of two distinct proteins in the same cell. Finally, by integrating the orthogonal SLIPT systems with fluorescent reporters, we demonstrate simultaneous multiplexed activation and fluorescence imaging of endogenous ERK and Akt activities in a single cell. Collectively, orthogonal PM-specific SLIPT systems provide a powerful new platform for multiplexed chemical signal control in living single cells, offering new opportunities for dissecting cell signaling networks and synthetic cell manipulation.

20 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review summarizes the existing fluorescent probes that target chemical/biological events within a single organelle and organelle-anchoring strategies are described and emphasized to inspire the design of new generations of fluorescent probes, before concluding with future prospects on the possible further development of chemical biology.
Abstract: Principle has it that even the most advanced super-resolution microscope would be futile in providing biological insight into subcellular matrices without well-designed fluorescent tags/probes. Developments in biology have increasingly been boosted by advances of chemistry, with one prominent example being small-molecule fluorescent probes that not only allow cellular-level imaging, but also subcellular imaging. A majority, if not all, of the chemical/biological events take place inside cellular organelles, and researchers have been shifting their attention towards these substructures with the help of fluorescence techniques. This Review summarizes the existing fluorescent probes that target chemical/biological events within a single organelle. More importantly, organelle-anchoring strategies are described and emphasized to inspire the design of new generations of fluorescent probes, before concluding with future prospects on the possible further development of chemical biology.

581 citations

Journal ArticleDOI
TL;DR: Two-photon imaging of MITO-TP and LYSO-TP in murine model shows that higher amount of HOCl can be detected in both lysosome and mitochondria of macrophage cells during inflammation condition, suggesting these probes could not only help clarify the distribution of subcellular HOCl, but also serve as excellent tools to exploit and elucidate functions of HO Cl at sub cellular levels.
Abstract: Hypochlorous acid (HOCl), as a highly potent oxidant, is well-known as a key “killer” for pathogens in the innate immune system. Recently, mounting evidence indicates that intracellular HOCl plays additional important roles in regulating inflammation and cellular apoptosis. However, the organelle(s) involved in the distribution of HOCl remain unknown, causing difficulty to fully exploit its biological functions in cellular signaling pathways and various diseases. One of the main reasons lies in the lack of effective chemical tools to directly detect HOCl at subcellular levels due to low concentration, strong oxidization, and short lifetime of HOCl. Herein, the first two-photon fluorescent HOCl probe (TP-HOCl 1) and its mitochondria- (MITO-TP) and lysosome- (LYSO-TP) targetable derivatives for imaging mitochondrial and lysosomal HOCl were reported. These probes exhibit fast response (within seconds), good selectivity, and high sensitivity (<20 nM) toward HOCl. In live cell experiments, both probes MITO-TP ...

447 citations

Journal ArticleDOI
TL;DR: The design, applications, challenges and potential directions of organelle-targeted bioactive species probes are described.
Abstract: Bioactive species, including reactive oxygen species (ROS, including O2˙-, H2O2, HOCl, 1O2, ˙OH, HOBr, etc.), reactive nitrogen species (RNS, including ONOO-, NO, NO2, HNO, etc.), reactive sulfur species (RSS, including GSH, Hcy, Cys, H2S, H2S n , SO2 derivatives, etc.), ATP, HCHO, CO and so on, are a highly important category of molecules in living cells. The dynamic fluctuations of these molecules in subcellular microenvironments determine cellular homeostasis, signal conduction, immunity and metabolism. However, their abnormal expressions can cause disorders which are associated with diverse major diseases. Monitoring bioactive molecules in subcellular structures is therefore critical for bioanalysis and related drug discovery. With the emergence of organelle-targeted fluorescent probes, significant progress has been made in subcellular imaging. Among the developed subcellular localization fluorescent tools, ROS, RNS and RSS (RONSS) probes are highly attractive, owing to their potential for revealing the physiological and pathological functions of these highly reactive, interactive and interconvertible molecules during diverse biological events, which are rather significant for advancing our understanding of different life phenomena and exploring new technologies for life regulation. This review mainly illustrates the design principles, detection mechanisms, current challenges, and potential future directions of organelle-targeted fluorescent probes toward RONSS.

404 citations

Journal ArticleDOI
TL;DR: A critical summary of microbial characteristics was provided to obtain connects of microbial community structure with operational conditions at various states of AD, such as mesophilic and thermophilic, wet and dry, success and failure, pretreated or not, lab-scale and full-scale.

328 citations

Journal ArticleDOI
TL;DR: This study validates the spatial control of the assemblies of nonspecific cytotoxic agents by EISA as a promising molecular process for selectively killing cancer cells without inducing acquired drug resistance.
Abstract: Targeting organelles by modulating the redox potential of mitochondria is a promising approach to kill cancer cells that minimizes acquired drug resistance. However, it lacks selectivity because mitochondria perform essential functions for (almost) all cells. We show that enzyme-instructed self-assembly (EISA), a bioinspired molecular process, selectively generates the assemblies of redox modulators (e.g., triphenyl phosphinium (TPP)) in the pericellular space of cancer cells for uptake, which allows selectively targeting the mitochondria of cancer cells. The attachment of TPP to a pair of enantiomeric, phosphorylated tetrapeptides produces the precursors (L-1P or D-1P) that form oligomers. Upon dephosphorylation catalyzed by ectophosphatases (e.g., alkaline phosphatase (ALP)) overexpressed on cancer cells (e.g., Saos2), the oligomers self-assemble to form nanoscale assemblies only on the surface of the cancer cells. The cancer cells thus uptake these assemblies of TPP via endocytosis, mainly via a caveol...

228 citations