scispace - formally typeset
Search or ask a question
Author

Akinobu Shimizu

Bio: Akinobu Shimizu is an academic researcher from Tokyo University of Agriculture and Technology. The author has contributed to research in topics: Face detection & Segmentation. The author has an hindex of 22, co-authored 146 publications receiving 2493 citations. Previous affiliations of Akinobu Shimizu include German Cancer Research Center & University of Tokyo.


Papers
More filters
Journal ArticleDOI
TL;DR: A comparison study between 10 automatic and six interactive methods for liver segmentation from contrast-enhanced CT images provides an insight in performance of different segmentation approaches under real-world conditions and highlights achievements and limitations of current image analysis techniques.
Abstract: This paper presents a comparison study between 10 automatic and six interactive methods for liver segmentation from contrast-enhanced CT images. It is based on results from the "MICCAI 2007 Grand Challenge" workshop, where 16 teams evaluated their algorithms on a common database. A collection of 20 clinical images with reference segmentations was provided to train and tune algorithms in advance. Participants were also allowed to use additional proprietary training data for that purpose. All teams then had to apply their methods to 10 test datasets and submit the obtained results. Employed algorithms include statistical shape models, atlas registration, level-sets, graph-cuts and rule-based systems. All results were compared to reference segmentations five error measures that highlight different aspects of segmentation accuracy. All measures were combined according to a specific scoring system relating the obtained values to human expert variability. In general, interactive methods reached higher average scores than automatic approaches and featured a better consistency of segmentation quality. However, the best automatic methods (mainly based on statistical shape models with some additional free deformation) could compete well on the majority of test images. The study provides an insight in performance of different segmentation approaches under real-world conditions and highlights achievements and limitations of current image analysis techniques.

979 citations

Journal ArticleDOI
27 Nov 2007
TL;DR: The proposed simultaneous extraction method using an abdominal cavity standardization process and atlas guided segmentation incorporating parameter estimation with the EM algorithm was statistically proved to have better performance in the segmentation of 3D CT volumes.
Abstract: Objective We propose a simultaneous extraction method for 12 organs from non-contrast three-dimensional abdominal CT images. Materials and methods The proposed method uses an abdominal cavity standardization process and atlas guided segmentation incorporating parameter estimation with the EM algorithm to deal with the large fluctuations in the feature distribution parameters between subjects. Segmentation is then performed using multiple level sets, which minimize the energy function that considers the hierarchy and exclusiveness between organs as well as uniformity of grey values in organs. To assess the performance of the proposed method, ten non-contrast 3D CT volumes were used. Results The accuracy of the feature distribution parameter estimation was slightly improved using the proposed EM method, resulting in better performance of the segmentation process. Nine organs out of twelve were statistically improved compared with the results without the proposed parameter estimation process. The proposed multiple level sets also boosted the performance of the segmentation by 7.2 points on average compared with the atlas guided This study was originally presented at CARS 2006 and supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

130 citations

Journal ArticleDOI
TL;DR: The proposed method has potential application in medical image segmentation, including diagnosis of diseases, and Statistically, the improvement in segmentation was significant for most of the organs considered herein.

83 citations

Journal ArticleDOI
TL;DR: A novel segmentation algorithm is proposed that improves lung segmentation for cases in which the lung has a unique shape and pathologies such as pleural effusion by incorporating multiple shapes and prior information on neighbor structures in a graph cut framework.

80 citations

Journal ArticleDOI
TL;DR: This paper demonstrates that the combination of a classifier trained by AdaBoost.M2 and features based on the estimated parameter of a log-compressed K-distribution, as well as those of the pattern spectrum, are useful for the discrimination of tumors.
Abstract: This paper proposes a novel algorithm to estimate a log-compressed K distribution parameter and presents an algorithm to discriminate breast tumors in ultrasonic images. We computed a total of 208 features for discrimination, including those based on a parameter of a log-compressed K-distribution, which quantifies the homogeneity of the echo pattern in the tumor, but is influenced by compression parameters in the ultrasonic device. The proposed algorithm estimates the parameter of the log-compressed K-distribution in a manner free from this influence. To quantify irregularities in tumor shape, pattern-spectrum-based features were newly developed in this paper. The discrimination process uses an ensemble classifier trained by a multiclass AdaBoost learning algorithm (AdaBoost.M2), combined with a sequential feature-selection process. A 10-fold cross-validation test validated the performance, and the results were compared with those of a Mahalanobis distance-based classifier and a multiclass support vector machine. A total of 200 carcinomas, 50 fibroadenomas, and 50 cysts were used in the experiments. This paper demonstrates that the combination of a classifier trained by AdaBoost.M2 and features based on the estimated parameter of a log-compressed K-distribution, as well as those of the pattern spectrum, are useful for the discrimination of tumors.

79 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) as mentioned in this paper was organized in conjunction with the MICCAI 2012 and 2013 conferences, and twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low and high grade glioma patients.
Abstract: In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients—manually annotated by up to four raters—and to 65 comparable scans generated using tumor image simulation software Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%–85%), illustrating the difficulty of this task We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource

3,699 citations

Journal ArticleDOI
TL;DR: The software consists of a collection of algorithms that are commonly used to solve medical image registration problems, and allows the user to quickly configure, test, and compare different registration methods for a specific application.
Abstract: Medical image registration is an important task in medical image processing. It refers to the process of aligning data sets, possibly from different modalities (e.g., magnetic resonance and computed tomography), different time points (e.g., follow-up scans), and/or different subjects (in case of population studies). A large number of methods for image registration are described in the literature. Unfortunately, there is not one method that works for all applications. We have therefore developed elastix, a publicly available computer program for intensity-based medical image registration. The software consists of a collection of algorithms that are commonly used to solve medical image registration problems. The modular design of elastix allows the user to quickly configure, test, and compare different registration methods for a specific application. The command-line interface enables automated processing of large numbers of data sets, by means of scripting. The usage of elastix for comparing different registration methods is illustrated with three example experiments, in which individual components of the registration method are varied.

3,444 citations

Posted Content
TL;DR: A novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes is proposed to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs).
Abstract: We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.

2,452 citations

09 Mar 2012
TL;DR: Artificial neural networks (ANNs) constitute a class of flexible nonlinear models designed to mimic biological neural systems as mentioned in this paper, and they have been widely used in computer vision applications.
Abstract: Artificial neural networks (ANNs) constitute a class of flexible nonlinear models designed to mimic biological neural systems. In this entry, we introduce ANN using familiar econometric terminology and provide an overview of ANN modeling approach and its implementation methods. † Correspondence: Chung-Ming Kuan, Institute of Economics, Academia Sinica, 128 Academia Road, Sec. 2, Taipei 115, Taiwan; ckuan@econ.sinica.edu.tw. †† I would like to express my sincere gratitude to the editor, Professor Steven Durlauf, for his patience and constructive comments on early drafts of this entry. I also thank Shih-Hsun Hsu and Yu-Lieh Huang for very helpful suggestions. The remaining errors are all mine.

2,069 citations