scispace - formally typeset
Search or ask a question
Author

Akinpelu Moronkeji

Bio: Akinpelu Moronkeji is an academic researcher from University of Benin. The author has contributed to research in topics: Leptin receptor & Acute kidney injury. The author has co-authored 2 publications.

Papers
More filters
Journal ArticleDOI
TL;DR: It is observed that pyrethroids can cause oxidative stress, deplete antioxidant levels, nephrotoxicity, and may modulate both humoral and cellular immune functions, and established NGAL as a sensitive diagnostic tool and early biomarker for acute kidney injury (AKI).
Abstract: BACKGROUND: Insecticide usage has increased in the tropics and subtropics due to the high prevalence of vector-borne infections, even though insecticide use effectively reduces insect-borne diseases. Insecticide exposure can cause oxidative stress and have severe consequences for human health. The study was then designed to evaluate oxidative stress and its effects on immunomodulatory and renal integrity among Wistar rats exposed to pyrethroids. METHODS: Eighty-four Wistar rats were randomly selected and divided into two groups. Fifty-one rats were exposed to 1.2 %w/v pyrethroids, while the remaining thirty-three rats were grouped as non-exposed. The groups were divided into three different groups, each with 7, 21, and 41 days. After days of exposure, the animals in each group were anesthetized, and blood samples were collected from the inferior vena cava. Using standard spectrophotometric techniques, the levels of total antioxidant status (TAS), malondialdehyde (MDA), glutathione (GSH), hydrogen peroxide (H2O2), urea, creatinine and uric acid were determined. Blood activities of superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) were determined. ELISA was used to determine levels of IgG, IgA, IgE, TNF-α, and NGAL. Data obtained were statistically compared. RESULTS: The serum mean levels of SOD, GPx, CAT, GSH, and TAS were significantly reduced (p < 0.05) while mean levels of MDA, H2O2, IgG, IgE, IgA, TNFα, neutrophil gelatinase-associated lipocalin (NGAL), urea, uric acid, and creatinine were significantly elevated (p < 0.05) from 7 to 41 days exposure in exposed groups. NGAL had a higher area under the ROC curve than urea and creatinine. CONCLUSIONS: This study observed that pyrethroids can cause oxidative stress, deplete antioxidant levels, nephrotoxicity, and may modulate both humoral and cellular immune functions. It also established NGAL as a sensitive diagnostic tool and early biomarker for acute kidney injury (AKI).
Journal ArticleDOI
TL;DR: It is self-evident that pyrethroid chemicals exposure may disrupt carbohydrate and lipid metabolism by raising the risk of obesity among the exposed groups.
Abstract: BACKGROUND: Due to widespread use of pesticides, an individual’s lifetime exposure to pesticide mixtures is unavoidable, resulting in potentiation of toxic effects such as changing metabolic signaling temporarily or permanently due to the formation of free radicals among exposed individuals. OBJECTIVE: This study then looked at the expression of leptin and insulin receptors in Wistar rats exposed to pyrethroid and its effects on adipokines and glycemic indices. METHODS: 84 Wistar rats were randomly selected and divided into two groups. 51 rats were exposed to 1.2 % w/v pyrethroid insecticides, while the remaining 33 rats were grouped as non-exposed. The groups were divided into three different groups, each with 7, 21, and 41 days. The animals were anesthetically sacrificed and samples of blood were collected after days of exposure. The levels of total antioxidant status (TAS), malondialdehyde (MDA), glutathione (GSH), hydrogen peroxide (H2O2), nitric oxide (NO), glucose and lipids were determined. Blood activities of superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) were also determined. ELISA was used to assess leptin, adiponectin, insulin, CRP, IL-6, and TNFα. Glycaemic indices were calculated appropriately. Leptin and Insulin expression was determined using the reverse transcriptase-polymerase chain reaction (RT-PCR) method. Data obtained were statistically compared, and P≤0.05 was considered significant. RESULTS: The mean TChol, TAG, and HDL-C were significantly different (p < 0.05) among the exposed groups. The serum mean levels of SOD, GPx, CAT, GSH, TAS, QUICKI, TNFα, IL6, and CRP were significantly reduced (p < 0.05), while mean levels of MDA, H2O2, NO, insulin, HOMA-IR, FIRI, leptin, and adiponectin were significantly elevated (p < 0.05) in exposed groups. The relative expression of insulin and leptin genes in exposed and non-exposed groups was also shown by column. CONCLUSION: It is self-evident that pyrethroid chemicals exposure may disrupt carbohydrate and lipid metabolism by raising the risk of obesity among the exposed groups.