scispace - formally typeset
Search or ask a question
Author

Akira Itoh

Bio: Akira Itoh is an academic researcher from Osaka City University. The author has contributed to research in topics: Species diversity & Biodiversity. The author has an hindex of 26, co-authored 58 publications receiving 4651 citations.


Papers
More filters
Journal ArticleDOI
26 May 2000-Science
TL;DR: The degree of aggregation in the distribution of 1768 tree species is examined based on the average density of conspecific trees in circular neighborhoods around each tree, and it is found that nearly every species was more aggregated than a random distribution.
Abstract: Fully mapped tree census plots of large area, 25 to 52 hectares, have now been completed at six different sites in tropical forests, including dry deciduous to wet evergreen forest on two continents. One of the main goals of these plots has been to evaluate spatial patterns in tropical tree populations. Here the degree of aggregation in the distribution of 1768 tree species is examined based on the average density of conspecific trees in circular neighborhoods around each tree. When all individuals larger than 1 centimeter in stem diameter were included, nearly every species was more aggregated than a random distribution. Considering only larger trees (≥ 10 centimeters in diameter), the pattern persisted, with most species being more aggregated than random. Rare species were more aggregated than common species. All six forests were very similar in all the particulars of these results.

1,117 citations

Journal ArticleDOI
13 Sep 2012-Nature
TL;DR: These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.
Abstract: The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon(1-3). With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses(4-9). As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world's major tropical regions. Our analysis reveals great variation in reserve 'health': about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.

962 citations

Journal ArticleDOI
TL;DR: It is shown that most tree species are extremely rare, meaning that they may be under serious risk of extinction at current deforestation rates, and a methodological framework for estimating species richness in trees is provided that may help refine species richness estimates of tree-dependent taxa.
Abstract: The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between similar to 40,000 and similar to 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of similar to 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of similar to 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.

338 citations

Journal ArticleDOI
TL;DR: There are no universal scaling relationships of growth or mortality with size among trees in tropical forests, and a set of alternative predictions were developed that retained some assumptions of metabolic ecology while also considering how availability of a key limiting resource, light, changes with tree size.
Abstract: The theory of metabolic ecology predicts specific relationships among tree stem diameter, biomass, height, growth and mortality. As demographic rates are important to estimates of carbon fluxes in forests, this theory might offer important insights into the global carbon budget, and deserves careful assessment. We assembled data from 10 oldgrowth tropical forests encompassing censuses of 367 ha and > 1.7 million trees to test the theory’s predictions. We also developed a set of alternative predictions that retained some assumptions of metabolic ecology while also considering how availability of a key limiting resource, light, changes with tree size. Our results show that there are no universal scaling relationships of growth or mortality with size among trees in tropical forests. Observed patterns were consistent with our alternative model in the one site where we had the data necessary to evaluate it, and were inconsistent with the predictions of metabolic ecology in all forests.

317 citations

Journal ArticleDOI
James A. Lutz, Tucker J. Furniss, Daniel J. Johnson, Stuart J. Davies1, David Allen, Alfonso Alonso, Kristina J. Anderson-Teixeira2, Ana Andrade, Jennifer L. Baltzer, Kendall M. L. Becker, Erika M. Blomdahl, Norman A. Bourg3, Norman A. Bourg2, Sarayudh Bunyavejchewin, David F. R. P. Burslem4, C. Alina Cansler, Ke Cao5, Min Cao5, Dairon Cárdenas, Li-Wan Chang, Kuo-Jung Chao, Wei-Chun Chao, Jyh-Min Chiang, Chengjin Chu, George B. Chuyong, Keith Clay, Richard Condit, Susan Cordell6, H. S. Dattaraja, Alvaro Duque7, Corneille E. N. Ewango, Gunter A. Fischer, Christine Fletcher, James A. Freund, Christian P. Giardina6, Sara J. Germain, Gregory S. Gilbert, Zhanqing Hao, Terese B. Hart, Billy C.H. Hau8, Fangliang He, Andy Hector, Robert W. Howe, Chang-Fu Hsieh9, Yue-Hua Hu5, Stephen P. Hubbell, Faith Inman-Narahari6, Akira Itoh, David Janík, Abdul Rahman Kassim, David Kenfack1, Lisa Korte, Kamil Král, Andrew J. Larson10, Yide Li, Yiching Lin, Shirong Liu, Shawn K. Y. Lum, Keping Ma5, Jean-Remy Makana, Yadvinder Malhi11, Sean M. McMahon12, William J. McShea2, Hervé Memiaghe13, Xiangcheng Mi5, Michael D. Morecroft11, Paul M. Musili, Jonathan Myers, Vojtech Novotny14, Alexandre Adalardo de Oliveira, Perry S. Ong15, David A. Orwig16, Rebecca Ostertag, Geoffrey G. Parker12, Rajit Patankar17, Richard P. Phillips, Glen Reynolds18, Lawren Sack, Guo-Zhang Michael Song, Sheng-Hsin Su, Raman Sukumar, I-Fang Sun, Hebbalalu S. Suresh, Mark E. Swanson, Sylvester Tan, Duncan W. Thomas, Jill Thompson, María Uriarte, Renato Valencia, Alberto Vicentini, Tomáš Vrška, Xugao Wang, George D. Weiblen, Amy Wolf, Shu-Hui Wu19, Han Xu, Takuo Yamakura, Sandra L. Yap15, Jess K. Zimmerman 
TL;DR: Because large-diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling.
Abstract: Aim: To examine the contribution of large-diameter trees to biomass, stand structure, and species richness across forest biomes. Location: Global. Time period: Early 21st century. Major taxa studied: Woody plants. Methods: We examined the contribution of large trees to forest density, richness and biomass using a global network of 48 large (from 2 to 60 ha) forest plots representing 5,601,473 stems across 9,298 species and 210 plant families. This contribution was assessed using three metrics: the largest 1% of trees >= 1 cm diameter at breast height (DBH), all trees >= 60 cm DBH, and those rank-ordered largest trees that cumulatively comprise 50% of forest biomass. Results: Averaged across these 48 forest plots, the largest 1% of trees >= 1 cm DBH comprised 50% of aboveground live biomass, with hectare-scale standard deviation of 26%. Trees >= 60 cm DBH comprised 41% of aboveground live tree biomass. The size of the largest trees correlated with total forest biomass (r(2) 5.62, p < .001). Large-diameter trees in high biomass forests represented far fewer species relative to overall forest richness (r(2) = 5.45, p < .001). Forests with more diverse large-diameter tree communities were comprised of smaller trees (r(2) = 5.33, p < .001). Lower large-diameter richness was associated with large-diameter trees being individuals of more common species (r(2) =5.17, p=5.002). The concentration of biomass in the largest 1% of trees declined with increasing absolute latitude (r(2) = 5.46, p < .001), as did forest density (r(2) = 5.31, p < .001). Forest structural complexity increased with increasing absolute latitude (r(2) = 5.26, p < .001). Main conclusions: Because large-diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling. We recommend managing forests for conservation of existing large-diameter trees or those that can soon reach large diameters as a simple way to conserve and potentially enhance ecosystem services.

297 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
18 Nov 2004-Nature
TL;DR: The development of a xenograft assay that identified human brain tumour initiating cells that initiate tumours in vivo gives strong support for the CSC hypothesis as the basis for many solid tumours, and establishes a previously unidentified cellular target for more effective cancer therapies.
Abstract: The cancer stem cell (CSC) hypothesis suggests that neoplastic clones are maintained exclusively by a rare fraction of cells with stem cell properties. Although the existence of CSCs in human leukaemia is established, little evidence exists for CSCs in solid tumours, except for breast cancer. Recently, we prospectively isolated a CD133+ cell subpopulation from human brain tumours that exhibited stem cell properties in vitro. However, the true measures of CSCs are their capacity for self renewal and exact recapitulation of the original tumour. Here we report the development of a xenograft assay that identified human brain tumour initiating cells that initiate tumours in vivo. Only the CD133+ brain tumour fraction contains cells that are capable of tumour initiation in NOD-SCID (non-obese diabetic, severe combined immunodeficient) mouse brains. Injection of as few as 100 CD133+ cells produced a tumour that could be serially transplanted and was a phenocopy of the patient's original tumour, whereas injection of 10(5) CD133- cells engrafted but did not cause a tumour. Thus, the identification of brain tumour initiating cells provides insights into human brain tumour pathogenesis, giving strong support for the CSC hypothesis as the basis for many solid tumours, and establishes a previously unidentified cellular target for more effective cancer therapies.

7,120 citations

Journal ArticleDOI

6,278 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Journal ArticleDOI
TL;DR: It is suggested that, similar to the manifold that tree species leaf traits cluster around the 'leaf economics spectrum', a similar 'wood economics spectrum' may be defined.
Abstract: Wood performs several essential functions in plants, including mechanically supporting aboveground tissue, storing water and other resources, and transporting sap. Woody tissues are likely to face physiological, structural and defensive trade-offs. How a plant optimizes among these competing functions can have major ecological implications, which have been under-appreciated by ecologists compared to the focus they have given to leaf function. To draw together our current understanding of wood function, we identify and collate data on the major wood functional traits, including the largest wood density database to date (8412 taxa), mechanical strength measures and anatomical features, as well as clade-specific features such as secondary chemistry. We then show how wood traits are related to one another, highlighting functional trade-offs, and to ecological and demographic plant features (growth form, growth rate, latitude, ecological setting). We suggest that, similar to the manifold that tree species leaf traits cluster around the 'leaf economics spectrum', a similar 'wood economics spectrum' may be defined. We then discuss the biogeography, evolution and biogeochemistry of the spectrum, and conclude by pointing out the major gaps in our current knowledge of wood functional traits.

2,408 citations