scispace - formally typeset
Search or ask a question
Author

Akira Mizuno

Other affiliations: Japan Tobacco
Bio: Akira Mizuno is an academic researcher from Nagoya University. The author has contributed to research in topics: Molecular cloud & Star formation. The author has an hindex of 59, co-authored 271 publications receiving 12118 citations. Previous affiliations of Akira Mizuno include Japan Tobacco.


Papers
More filters
Journal ArticleDOI
TL;DR: The SAGE Legacy project as discussed by the authors performed a uniform and unbiased imaging survey of the Large Magellanic Cloud (LMC; 7° × 7°) using the IRAC (3.6, 4.5, 5.8, and 8 μm) and MIPS (24, 70, and 160μm) instruments on board the Spitzer Space Telescope.
Abstract: We are performing a uniform and unbiased imaging survey of the Large Magellanic Cloud (LMC; ~7° × 7°) using the IRAC (3.6, 4.5, 5.8, and 8 μm) and MIPS (24, 70, and 160 μm) instruments on board the Spitzer Space Telescope in the Surveying the Agents of a Galaxy's Evolution (SAGE) survey, these agents being the interstellar medium (ISM) and stars in the LMC. This paper provides an overview of the SAGE Legacy project, including observing strategy, data processing, and initial results. Three key science goals determined the coverage and depth of the survey. The detection of diffuse ISM with column densities >1.2 × 10^(21) H cm^(-2) permits detailed studies of dust processes in the ISM. SAGE's point-source sensitivity enables a complete census of newly formed stars with masses >3 M_☉ that will determine the current star formation rate in the LMC. SAGE's detection of evolved stars with mass-loss rates >1 × 10^(-8) M_☉ yr^(-1) will quantify the rate at which evolved stars inject mass into the ISM of the LMC. The observing strategy includes two epochs in 2005, separated by 3 months, that both mitigate instrumental artifacts and constrain source variability. The SAGE data are nonproprietary. The data processing includes IRAC and MIPS pipelines and a database for mining the point-source catalogs, which will be released to the community in support of Spitzer proposal cycles 4 and 5. We present initial results on the epoch 1 data for a region near N79 and N83. The MIPS 70 and 160 μm images of the diffuse dust emission of the N79/N83 region reveal a similar distribution to the gas emissions, especially the H I 21 cm emission. The measured point-source sensitivity for the epoch 1 data is consistent with expectations for the survey. The point-source counts are highest for the IRAC 3.6 μm band and decrease dramatically toward longer wavelengths, consistent with the fact that stars dominate the point-source catalogs and the dusty objects detected at the longer wavelengths are rare in comparison. The SAGE epoch 1 point-source catalog has ~4 × 10^6 sources, and more are anticipated when the epoch 1 and 2 data are combined. Using Milky Way (MW) templates as a guide, we adopt a simplified point-source classification to identify three candidate groups—stars without dust, dusty evolved stars, and young stellar objects—that offer a starting point for this work. We outline a strategy for identifying foreground MW stars, which may comprise as much as 18% of the source list, and background galaxies, which may comprise ~12% of the source list.

779 citations

Journal ArticleDOI
TL;DR: In this paper, the agents of a galaxy's evolution (SAGE), the interstellar medium (ISM) and stars in the Large Magellanic Cloud (LMC) were surveyed using the Spitzer Space Telescope.
Abstract: We are performing a uniform and unbiased, ~7x7 degrees imaging survey of the Large Magellanic Cloud (LMC), using the IRAC and MIPS instruments on board the Spitzer Space Telescope in order to survey the agents of a galaxy's evolution (SAGE), the interstellar medium (ISM) and stars in the LMC. The detection of diffuse ISM with column densities >1.2x10^21 H cm^-2 permits detailed studies of dust processes in the ISM. SAGE's point source sensitivity enables a complete census of newly formed stars with masses >3 solar masses that will determine the current star formation rate in the LMC. SAGE's detection of evolved stars with mass loss rates >1x10^-8 solar masses per year will quantify the rate at which evolved stars inject mass into the ISM of the LMC. The observing strategy includes two epochs in 2005, separated by three months, that both mitigate instrumental artifacts and constrain source variability. The SAGE data are non-proprietary. The data processing includes IRAC and MIPS pipelines and a database for mining the point source catalogs, which will be released to the community in support of Spitzer proposal cycles 4 and 5. We present initial results on the epoch 1 data with a special focus on the N79 and N83 region. The SAGE epoch 1 point source catalog has ~4 million sources. The point source counts are highest for the IRAC 3.6 microns band and decrease dramatically towards longer wavelengths consistent with the fact that stars dominate the point source catalogs and that the dusty objects, e.g. young stellar objects and dusty evolved stars that detected at the longer wavelengths, are rare in comparison. We outline a strategy for identifying foreground MW stars, that may comprise as much as 18% of the source list, and background galaxies, that may comprise ~12% of the source list.

717 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied star formation activities in the molecular clouds in the Large Magellanic Cloud (LMC) and classified them into three types according to the activities of massive star formation.
Abstract: We studied star formation activities in the molecular clouds in the Large Magellanic Cloud. We have utilized the second catalog of 272 molecular clouds obtained by NANTEN to compare the cloud distribution with signatures of massive star formation including stellar clusters, and optical and radio H II regions. We find that the molecular clouds are classified into three types according to the activities of massive star formation: Type I shows no signature of massive star formation; Type II is associated with relatively small H II region(s); and Type III with both H II region(s) and young stellar cluster(s). The radio continuum sources were used to confirm that Type I giant molecular clouds (GMCs) do not host optically hidden H II regions. These signatures of massive star formation show a good spatial correlation with the molecular clouds in the sense that they are located within ~100 pc of the molecular clouds. Among possible ideas to explain the GMC types, we favor that the types indicate an evolutionary sequence; i.e., the youngest phase is Type I, followed by Type II, and the last phase is Type III, where the most active star formation takes place leading to cloud dispersal. The number of the three types of GMCs should be proportional to the timescale of each evolutionary stage if a steady state of massive star and cluster formation is a good approximation. By adopting the timescale of the youngest stellar clusters, 10 Myr, we roughly estimate the timescales of Types I, II, and III to be 6 Myr, 13 Myr, and 7 Myr, respectively, corresponding to a lifetime of 20-30 Myr for the GMCs with a mass above the completeness limit, 5 × 104 M ☉.

342 citations

Journal ArticleDOI
TL;DR: The second survey of the molecular clouds in the Large Magellanic Cloud in 12CO ( -->J = 1?0) was carried out by NANTEN as discussed by the authors, where the authors derived the physical properties of the 164 GMCs that have an extent more than the beam size of the NantEN survey in both the major and minor axes.
Abstract: The second survey of the molecular clouds in the Large Magellanic Cloud in 12CO ( -->J = 1?0) was carried out by NANTEN. The sensitivity of this survey is twice as high as that of the previous NANTEN survey, leading to a detection of molecular clouds with -->MCO 2 ? 104 M?. We identified 272 molecular clouds, 230 of which are detected at three or more observed positions. We derived the physical properties, such as size, line width, and virial mass, of the 164 GMCs that have an extent more than the beam size of NANTEN in both the major and minor axes. The CO luminosity and virial mass of the clouds show a good correlation of -->Mvir LCO1.1 ? 0.1, with a Spearman rank correlation of 0.8, suggesting that the clouds are in nearly virial equilibrium. Assuming the clouds are in virial equilibrium, we derived an XCO-factor of ~ -->7 ? 1020 cm?2 (K km s?1)?1. The mass spectrum of the clouds is fitted well by a power law of -->Ncloud(> MCO) MCO?0.75 ? 0.06 above the completeness limit of -->5 ? 104 M?. The slope of the mass spectrum becomes steeper if we fit only the massive clouds, e.g., -->Ncloud(> MCO) MCO?1.2 ? 0.2 for -->MCO ? 3 ? 105 M?.

331 citations

Journal ArticleDOI
TL;DR: In this paper, the SAGE-SMC (Surveying the Agents of Galaxy Evolution in the Tidally stripped, low metallicity Small Magellanic Cloud) Spitzer Legacy program was used to study the amount and type of dust in the present interstellar medium.
Abstract: The Small Magellanic Cloud (SMC) provides a unique laboratory for the study of the lifecycle of dust given its low metallicity (~1/5 solar) and relative proximity (~60 kpc). This motivated the SAGE-SMC (Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud) Spitzer Legacy program with the specific goals of studying the amount and type of dust in the present interstellar medium, the sources of dust in the winds of evolved stars, and how much dust is consumed in star formation. This program mapped the full SMC (30 deg^2) including the body, wing, and tail in seven bands from 3.6 to 160 μm using IRAC and MIPS on the Spitzer Space Telescope. The data were reduced and mosaicked, and the point sources were measured using customized routines specific for large surveys. We have made the resulting mosaics and point-source catalogs available to the community. The infrared colors of the SMC are compared to those of other nearby galaxies and the 8 μm/24 μm ratio is somewhat lower than the average and the 70 μm/160 μm ratio is somewhat higher than the average. The global infrared spectral energy distribution (SED) shows that the SMC has approximately 1/3 the aromatic emission/polycyclic aromatic hydrocarbon abundance of most nearby galaxies. Infrared color-magnitude diagrams are given illustrating the distribution of different asymptotic giant branch stars and the locations of young stellar objects. Finally, the average SED of H II/star formation regions is compared to the equivalent Large Magellanic Cloud average H II/star formation region SED. These preliminary results will be expanded in detail in subsequent papers.

255 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the present-day mass function and initial mass function in various components of the Galaxy (disk, spheroid, young, and globular clusters) and in conditions characteristic of early star formation is presented in this paper.
Abstract: We review recent determinations of the present-day mass function (PDMF) and initial mass function (IMF) in various components of the Galaxy—disk, spheroid, young, and globular clusters—and in conditions characteristic of early star formation. As a general feature, the IMF is found to depend weakly on the environment and to be well described by a power-law form forM , and a lognormal form below, except possibly for m!1 early star formation conditions. The disk IMF for single objects has a characteristic mass around M , m!0.08 c and a variance in logarithmic mass , whereas the IMF for multiple systems hasM , and . j!0.7 m!0.2 j!0.6 c The extension of the single MF into the brown dwarf regime is in good agreement with present estimates of L- and T-dwarf densities and yields a disk brown dwarf number density comparable to the stellar one, n!n! BD " pc !3 .T he IMF of young clusters is found to be consistent with the disk fi eld IMF, providing the same correction 0.1 for unresolved binaries, confirming the fact that young star clusters and disk field stars represent the same stellar population. Dynamical effects, yielding depletion of the lowest mass objects, are found to become consequential for ages!130 Myr. The spheroid IMF relies on much less robust grounds. The large metallicity spread in the local subdwarf photometric sample, in particular, remains puzzling. Recent observations suggest that there is a continuous kinematic shear between the thick-disk population, present in local samples, and the genuine spheroid one. This enables us to derive only an upper limit for the spheroid mass density and IMF. Within all the uncertainties, the latter is found to be similar to the one derived for globular clusters and is well represented also by a lognormal form with a characteristic mass slightly larger than for the disk, M , ,e xcluding as ignif icant population of m!0.2-0.3 c brown dwarfs in globular clusters and in the spheroid. The IMF characteristic of early star formation at large redshift remains undetermined, but different observational constraints suggest that it does not extend below!1M , .T hese results suggest a characteristic mass for star formation that decreases with time, from conditions prevailing at large redshift to conditions characteristic of the spheroid (or thick disk) to present-day conditions.Theseconclusions,however, remain speculative, given the large uncertainties in the spheroid and early star IMF determinations. These IMFs allow a reasonably robust determination of the Galactic present-day and initial stellar and brown dwarf contents. They also have important galactic implications beyond the Milky Way in yielding more accurate mass-to-light ratio determinations. The mass-to-light ratios obtained with the disk and the spheroid IMF yield values 1.8-1.4 times smaller than for a Salpeter IMF, respectively, in agreement with various recent dynamical determinations. This general IMF determination is examined in the context of star formation theory. None of the theories based on a Jeans-type mechanism, where fragmentation is due only to gravity, can fulfill all the observational constraints on star formation and predict a large number of substellar objects. On the other hand, recent numerical simulations of compressible turbulence, in particular in super-Alfvenic conditions, seem to reproduce both qualitatively and quantitatively the stellar and substellar IMF and thus provide an appealing theoretical foundation. In this picture, star formation is induced by the dissipation of large-scale turbulence to smaller scales through radiative MHD shocks, producing filamentary structures. These shocks produce local nonequilibrium structures with large density contrasts, which collapse eventually in gravitationally bound objects under the combined influence of turbulence and gravity. The concept of a single Jeans mass is replaced by a distribution of local Jeans masses, representative of the lognormal probability density function of the turbulent gas. Objects below the mean thermal Jeans mass still have a possibility to collapse, although with a decreasing probability.

8,218 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Abstract: We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star-formation rates are discussed, and updated prescriptions for calculating star-formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.

2,525 citations

Journal ArticleDOI
TL;DR: In this paper, an overall theoretical framework and the observations that motivate it are outlined, outlining the key dynamical processes involved in star formation, including turbulence, magnetic fields, and self-gravity.
Abstract: We review current understanding of star formation, outlining an overall theoretical framework and the observations that motivate it. A conception of star formation has emerged in which turbulence plays a dual role, both creating overdensities to initiate gravitational contraction or collapse, and countering the effects of gravity in these overdense regions. The key dynamical processes involved in star formation—turbulence, magnetic fields, and self-gravity— are highly nonlinear and multidimensional. Physical arguments are used to identify and explain the features and scalings involved in star formation, and results from numerical simulations are used to quantify these effects. We divide star formation into large-scale and small-scale regimes and review each in turn. Large scales range from galaxies to giant molecular clouds (GMCs) and their substructures. Important problems include how GMCs form and evolve, what determines the star formation rate (SFR), and what determines the initial mass function (IMF). Small scales range from dense cores to the protostellar systems they beget. We discuss formation of both low- and high-mass stars, including ongoing accretion. The development of winds and outflows is increasingly well understood, as are the mechanisms governing angular momentum transport in disks. Although outstanding questions remain, the framework is now in place to build a comprehensive theory of star formation that will be tested by the next generation of telescopes.

2,522 citations

Journal ArticleDOI
TL;DR: In this article, a large-scale CO survey of the first and second Galactic quadrants and the nearby molecular cloud complexes in Orion and Taurus, obtained with the CfA 1.2 m telescope, was combined with 31 other surveys obtained over the past two decades with that instrument and a similar telescope on Cerro Tololo in Chile, to produce a new composite CO survey.
Abstract: New large-scale CO surveys of the first and second Galactic quadrants and the nearby molecular cloud complexes in Orion and Taurus, obtained with the CfA 1.2 m telescope, have been combined with 31 other surveys obtained over the past two decades with that instrument and a similar telescope on Cerro Tololo in Chile, to produce a new composite CO survey of the entire Milky Way. The survey consists of 488,000 spectra that Nyquist or beamwidth ( °) sample the entire Galactic plane over a strip 4°-10° wide in latitude, and beamwidth or ° sample nearly all large local clouds at higher latitudes. Compared with the previous composite CO survey of Dame et al. (1987), the new survey has 16 times more spectra, up to 3.4 times higher angular resolution, and up to 10 times higher sensitivity per unit solid angle. Each of the component surveys was integrated individually using clipping or moment masking to produce composite spatial and longitude-velocity maps of the Galaxy that display nearly all of the statistically significant emission in each survey but little noise. The composite maps provide detailed information on individual molecular clouds, suggest relationships between clouds and regions widely separated on the sky, and clearly display the main structural features of the molecular Galaxy. In addition, since the gas, dust, and Population I objects associated with molecular clouds contribute to the Galactic emission in every major wavelength band, the precise kinematic information provided by the present survey will form the foundation for many large-scale Galactic studies. A map of molecular column density predicted from complete and unbiased far-infrared and 21 cm surveys of the Galaxy was used both to determine the completeness of the present survey and to extrapolate it to the entire sky at |b| 5°), X shows little systematic variation with latitude from a mean value of (1.8 ± 0.3) × 1020 cm-2 K-1 km-1 s. Given the large sky area and large quantity of CO data analyzed, we conclude that this is the most reliable measurement to date of the mean X value in the solar neighborhood.

2,266 citations

01 Jan 2005
TL;DR: The Monthly Notices as mentioned in this paper is one of the three largest general primary astronomical research publications in the world, published by the Royal Astronomical Society (RAE), and it is the most widely cited journal in astronomy.
Abstract: Monthly Notices is one of the three largest general primary astronomical research publications. It is an international journal, published by the Royal Astronomical Society. This article 1 describes its publication policy and practice.

2,091 citations