scispace - formally typeset
Search or ask a question
Author

Akira Orimo

Bio: Akira Orimo is an academic researcher from Juntendo University. The author has contributed to research in topics: Stromal cell & Ring finger. The author has an hindex of 30, co-authored 72 publications receiving 8874 citations. Previous affiliations of Akira Orimo include University of Manchester & Saitama Medical University.


Papers
More filters
Journal ArticleDOI
06 May 2005-Cell
TL;DR: Using a coimplantation tumor xenograft model, it is demonstrated that carcinoma-associated fibroblasts extracted from human breast carcinomas promote the growth of admixed breast carcinoma cells significantly more than do normal mammaries derived from the same patients.

3,373 citations

Journal ArticleDOI
TL;DR: The importance of this SDF-1-CXCR4 signaling pathway in the tumor microenvironment is highlighted and the mechanisms by which stromal fibroblasts within mammary carcinomas enhance tumor growth are discussed.
Abstract: Tumors are highly complex tissues composed of neoplastic cells and, in the case of carcinomas, stromal cell compartments containing a variety of mesenchymal cells, notably fibroblasts, myofibroblasts, endothelial cells, pericytes, and a variety of inflammatory cells associated with the immune system. Fibroblasts and myofibroblasts often represent the majority of the stromal cells within various types of human carcinomas, yet the specific contributions of these cells to tumor growth are poorly understood. Recent work has demonstrated that stromal fibroblast fractions, named carcinoma-associated fibroblasts (CAFs), that have been extracted from a number of invasive human breast carcinomas are more competent to promote the growth of mammary carcinoma cells and to enhance tumor angiogenesis than are comparable cells derived from outside of these tumor masses. CAFs include large populations of myofibroblasts that secrete elevated levels of stromal cell-derived factor 1 (SDF-1), also called CXCL12, which plays a central role in the promotion of tumor growth and angiogenesis; CAF-derived SDF-1 not only stimulates carcinoma cell growth directly through the CXCR4 receptor displayed on tumor cells but also serves to recruit endothelial progenitor cells (EPCs) into tumors, thereby furthering neoangiogenesis. In this review, we highlight the importance of this SDF-1-CXCR4 signaling pathway in the tumor microenvironment and discuss the mechanisms by which stromal fibroblasts within mammary carcinomas enhance tumor growth.

767 citations

Journal ArticleDOI
TL;DR: Findings indicate that the establishment of the self-sustaining TGF-β and SDF-1 autocrine signaling gives rise to tumor-promoting CAF myofibroblasts during tumor progression, which may prove to be an attractive therapeutic target to block the evolution of tumor- Promoting CAFs.
Abstract: Much interest is currently focused on the emerging role of tumor-stroma interactions essential for supporting tumor progression. Carcinoma-associated fibroblasts (CAFs), frequently present in the stroma of human breast carcinomas, include a large number of myofibroblasts, a hallmark of activated fibroblasts. These fibroblasts have an ability to substantially promote tumorigenesis. However, the precise cellular origins of CAFs and the molecular mechanisms by which these cells evolve into tumor-promoting myofibroblasts remain unclear. Using a coimplantation breast tumor xenograft model, we show that resident human mammary fibroblasts progressively convert into CAF myofibroblasts during the course of tumor progression. These cells increasingly acquire two autocrine signaling loops, mediated by TGF-β and SDF-1 cytokines, which both act in autostimulatory and cross-communicating fashions. These autocrine-signaling loops initiate and maintain the differentiation of fibroblasts into myofibroblasts and the concurrent tumor-promoting phenotype. Collectively, these findings indicate that the establishment of the self-sustaining TGF-β and SDF-1 autocrine signaling gives rise to tumor-promoting CAF myofibroblasts during tumor progression. This autocrine-signaling mechanism may prove to be an attractive therapeutic target to block the evolution of tumor-promoting CAFs.

698 citations

Journal ArticleDOI
TL;DR: This study indicates that ER alpha and ER beta can interact in vivo, cross-signaling each other.

526 citations

Journal Article
TL;DR: Findings may help elucidate the mechanisms of hormonal control of telomerase activity and aid understanding of the roles of sex steroids in cellular senescence and aging as well as estrogen-induced carcinogenesis.
Abstract: Telomerase activity is present in most malignant tumors and provides a mechanism for the unlimited potential for division of neoplastic cells. Although telomerase is known to be a regulated enzyme, the factors and mechanisms involved in telomerase regulation are not well understood. In the present study, we examined the effects of estrogen on telomerase activity. Telomerase activity in estrogen receptor (ER)-positive MCF-7 cells was up-regulated by the treatment with 17beta-estradiol. This activation accompanied up-regulation of the telomerase catalytic subunit, hTERT mRNA. Gel shift assays revealed that the imperfect palindromic estrogen-responsive element in the hTERT promoter specifically binds to ER. Transient expression assays using luciferase reporter plasmids containing various fragments of hTERT promoter showed that this imperfect palindromic estrogen-responsive element is responsible for transcriptional activation by ligand-activated ER. We also found that estrogen activates c-Myc expression in MCF-7 cells and that E-boxes in the hTERT promoter that bind c-Myc/Max play additional roles in estrogen-induced transactivation of hTERT. Estrogen thus activates telomerase via direct and indirect effects on the hTERT promoter. These findings may help elucidate the mechanisms of hormonal control of telomerase activity and aid understanding of the roles of sex steroids in cellular senescence and aging as well as estrogen-induced carcinogenesis.

474 citations


Cited by
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations

Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The principal mechanisms that govern the effects of inflammation and immunity on tumor development are outlined and attractive new targets for cancer therapy and prevention are discussed.

8,664 citations

Journal ArticleDOI
TL;DR: Fibroblasts are a key determinant in the malignant progression of cancer and represent an important target for cancer therapies.
Abstract: Tumours are known as wounds that do not heal - this implies that cells that are involved in angiogenesis and the response to injury, such as endothelial cells and fibroblasts, have a prominent role in the progression, growth and spread of cancers. Fibroblasts are associated with cancer cells at all stages of cancer progression, and their structural and functional contributions to this process are beginning to emerge. Their production of growth factors, chemokines and extracellular matrix facilitates the angiogenic recruitment of endothelial cells and pericytes. Fibroblasts are therefore a key determinant in the malignant progression of cancer and represent an important target for cancer therapies.

4,232 citations

Journal ArticleDOI
TL;DR: The estrogenic activity of environmental chemicals and phytoestrogens in competition binding assays with ERα or ERβ protein, and in a transient gene expression assay using cells in which an acute estrogenic response is created by cotransfecting cultures with recombinant human ERβ complementary DNA (cDNA) in the presence of an estrogen-dependent reporter plasmid are investigated.
Abstract: The rat, mouse and human estrogen receptor (ER) exists as two subtypes, ER alpha and ER beta, which differ in the C-terminal ligand-binding domain and in the N-terminal transactivation domain. In this study, we investigated the estrogenic activity of environmental chemicals and phytoestrogens in competition binding assays with ER alpha or ER beta protein, and in a transient gene expression assay using cells in which an acute estrogenic response is created by cotransfecting cultures with recombinant human ER alpha or ER beta complementary DNA (cDNA) in the presence of an estrogen-dependent reporter plasmid. Saturation ligand-binding analysis of human ER alpha and ER beta protein revealed a single binding component for [3H]-17beta-estradiol (E2) with high affinity [dissociation constant (Kd) = 0.05 - 0.1 nM]. All environmental estrogenic chemicals [polychlorinated hydroxybiphenyls, dichlorodiphenyltrichloroethane (DDT) and derivatives, alkylphenols, bisphenol A, methoxychlor and chlordecone] compete with E2 for binding to both ER subtypes with a similar preference and degree. In most instances the relative binding affinities (RBA) are at least 1000-fold lower than that of E2. Some phytoestrogens such as coumestrol, genistein, apigenin, naringenin, and kaempferol compete stronger with E2 for binding to ER beta than to ER alpha. Estrogenic chemicals, as for instance nonylphenol, bisphenol A, o, p'-DDT and 2',4',6'-trichloro-4-biphenylol stimulate the transcriptional activity of ER alpha and ER beta at concentrations of 100-1000 nM. Phytoestrogens, including genistein, coumestrol and zearalenone stimulate the transcriptional activity of both ER subtypes at concentrations of 1-10 nM. The ranking of the estrogenic potency of phytoestrogens for both ER subtypes in the transactivation assay is different; that is, E2 >> zearalenone = coumestrol > genistein > daidzein > apigenin = phloretin > biochanin A = kaempferol = naringenin > formononetin = ipriflavone = quercetin = chrysin for ER alpha and E2 >> genistein = coumestrol > zearalenone > daidzein > biochanin A = apigenin = kaempferol = naringenin > phloretin = quercetin = ipriflavone = formononetin = chrysin for ER beta. Antiestrogenic activity of the phytoestrogens could not be detected, except for zearalenone which is a full agonist for ER alpha and a mixed agonist-antagonist for ER beta. In summary, while the estrogenic potency of industrial-derived estrogenic chemicals is very limited, the estrogenic potency of phytoestrogens is significant, especially for ER beta, and they may trigger many of the biological responses that are evoked by the physiological estrogens.

4,078 citations

Journal ArticleDOI
17 Nov 2006-Cell
TL;DR: Understanding of the origins and nature of cancer metastasis and the selection of traits that are advantageous to cancer cells is promoted.

3,863 citations