scispace - formally typeset
Search or ask a question
Author

Al Eschenbacher

Bio: Al Eschenbacher is an academic researcher from New Mexico Institute of Mining and Technology. The author has contributed to research in topics: Lava & Volcano. The author has an hindex of 1, co-authored 1 publications receiving 100 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors examined the degassing of the magmatic system at Erebus volcano using melt inclusion data and high temporal resolution open-path Fourier transform infrared (FTIR) spectroscopic measurements of gas emissions from the active lava lake.

126 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors show that the CO 2 and S concentrations within an included melt decrease with progressive diffusive H 2 O loss, and propose that this occurs due to dehydration-induced changes to the internal pressure of the inclusion.

192 citations

Journal ArticleDOI
TL;DR: This paper reviewed the causes of variability in sulfur abundance and speciation in different geodynamic contexts; the measurement of sulfur emissions from volcanoes; links between subsurface processes and surface observations; sulfur chemistry in volcanic plumes; and the consequences of sulfur degassing for climate and the environment.
Abstract: Despite its relatively minor abundance in magmas (compared with H2O and CO2), sulfur degassing from volcanoes is of tremendous significance. It can exert substantial influence on magmatic evolution (potentially capable of triggering eruptions); represents one of the most convenient opportunities for volcano monitoring and hazard assessment; and can result in major impacts on the atmosphere, climate and terrestrial ecosystems at a range of spatial and temporal scales. The complex behavior of sulfur in magmas owes much to its multiple valence states (−II, 0, IV, VI), speciation (e.g., S2, H2S, SO2, OCS and SO3 in the gas phase; S2−, SO42− and SO32− in the melt; and non-volatile solid phases such as pyrrhotite and anhydrite), and variation in stable isotopic composition (32S, 33S, 34S and 36S; e.g., Metrich and Mandeville 2010). Sulfur chemistry in the atmosphere is similarly rich involving gaseous and condensed phases and invoking complex homogeneous and heterogeneous chemical reactions. Sulfur degassing from volcanoes and geothermal areas is also important since a variety of microorganisms thrive based on the redox chemistry of sulfur: by reducing sulfur, thiosulfate, sulfite and sulfate to H2S, or oxidizing sulfur and H2S to sulfate (e.g., Takano et al. 1997; Amend and Shock 2001; Shock et al. 2010). Understanding volcanic sulfur degassing thus provides vital insights into magmatic, volcanic and hydrothermal processes; the impacts of volcanism on the Earth system; and biogeochemical cycles. Here, we review the causes of variability in sulfur abundance and speciation in different geodynamic contexts; the measurement of sulfur emissions from volcanoes; links between subsurface processes and surface observations; sulfur chemistry in volcanic plumes; and the consequences of sulfur degassing for climate and the environment. ### Geodynamics and the geochemical behavior of sulfur The …

172 citations

Journal ArticleDOI
TL;DR: In this paper, the authors track the redox evolution of an alkaline magmatic suite at Erebus volcano, Antarctica, from the mantle to the surface, using X-ray absorption near-edge structure (XANES) spectroscopy at the iron and sulphur K-edges.

112 citations

Book ChapterDOI
01 Jan 2014
TL;DR: A range of field, laboratory, and remote sensing techniques can be applied to measurements and monitoring of volcanic gas and aerosol compositions (elemental, molecular, and isotopic) and flux as mentioned in this paper.
Abstract: Volcanic degassing represents an essential component of the global geochemical cycles that determine the state of the atmosphere and climate. It also exerts a first-order influence on the ways in which volcanoes erupt and is thus vital to understanding how volcanoes work and assessing their hazards. This article reviews the sources of volcanic volatiles, their behavior in ascending magmas and surficial reservoirs (including isotopic fractionation), and the processes by which gases separate from melt and reach the atmosphere. A range of field, laboratory, and remote sensing techniques can be applied to measurements and monitoring of volcanic gas and aerosol compositions (elemental, molecular, and isotopic) and flux. It summarizes their application and the general characteristics of volatile emissions associated with different geodynamic settings and volcanic manifestations. Some methods, including those based on petrological and ice core analysis, can even provide estimates of volatile budgets of eruptions that occurred in the distant past. Having considered the source-to-surface processes related to volcanic degassing, it reviews the impacts of emissions on the atmosphere, climate, and environment, from local to global scales, and the associated human and animal health hazards of volcanogenic pollution.

105 citations

Journal ArticleDOI
TL;DR: High‐frequency gas monitoring is used to track the behavior of the Turrialba Volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions, showing a remarkable shift to purely magmatic composition during the second eruptive period.
Abstract: Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San Jose. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high-frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO2-rich gas (CO2/S-total>4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2weeks before eruptions, which are accompanied by shallowly derived sulfur-rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is similar to 8-10km deep, whereas the shallow magmatic gas source is at similar to 3-5km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H2S/SO2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000T/d SO2 and H2S/SO2>1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H2S/SO2<0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high-temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity.

97 citations