scispace - formally typeset
Search or ask a question
Author

Alain Meunier

Bio: Alain Meunier is an academic researcher from University of Poitiers. The author has contributed to research in topics: Illite & Clay minerals. The author has an hindex of 35, co-authored 122 publications receiving 4644 citations.


Papers
More filters
Journal ArticleDOI
03 Nov 2011-Nature
TL;DR: Clay minerals, recently discovered to be widespread in Mars’s Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago, and available data indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachia rock record dominated by evidence of subsurface waters.
Abstract: Clay minerals, recently discovered to be widespread in Mars’s Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars’s surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.

720 citations

Book
20 Aug 2008
TL;DR: In this article, the development of Soils and Weathering Profile of Clay Mineral Formation in Weathered Rocks: Water/rock interaction, Plants and Soil Clay Minerals, Clays and Climate - Clay Assemblages Formed under Extreme Humidity Conditions.
Abstract: Fundamentals of Clay Mineral Crystal Structure and Physicochemical Properties- Basics for the Study of Soil and Weathered Rock Geochemical Systems- The Development of Soils and Weathering Profile- Clay Mineral Formation in Weathered Rocks: Water/Rock Interaction- Plants and Soil Clay Minerals- Clays and Climate - Clay Assemblages Formed under Extreme Humidity Conditions- Physical Disequilibrium and Transportation of Soil Material- The Place of Clay Mineral Species in Soils and Alterites- The Place of Clay Mineral Species in Soils and Alterites

359 citations

Journal ArticleDOI
TL;DR: The diagenetic evolution of kaolin and illitic minerals in sandstones is described in this article, where the structural characterization of these minerals, the possible reaction pathways leading to their crystallization, and the origin of the fluids involved are discussed specifically.
Abstract: The diagenetic evolution of kaolin and illitic minerals in sandstones is described here. The structural characterization of these minerals, the possible reaction pathways leading to their crystallization, and the origin of the fluids involved are discussed specifically. While early precipitation of kaolinite is in general related to flushing by meteoric waters, subsequent diagenetic kaolinite-to-dickite transformation probably results from invasion by acidic fluids of organic origin. Dickite is the stable polytype in most sandstone formations and the kaolinite-to-dickite conversion is kinetically controlled. The conventional model of kaolin illitization, assuming a thermodynamic control in a closed system, is discussed and compared to an alternative model in which illitization of kaolin is not coupled to dissolution of K-feldspar (Berger et al. , 1997). In the latter model, illite crystallization at the expense of kaolin implies that an energy barrier is overcome either by an increased K+/H+ activity ratio in solution or by a considerable temperature increase.

292 citations

Journal ArticleDOI
01 Jul 2010-Nature
TL;DR: The discovery of centimetre-sized structures from the 2.1-Gyr-old black shales of the Palaeoproterozoic Francevillian B Formation in Gabon are reported, which are interpreted as highly organized and spatially discrete populations of colonial organisms.
Abstract: The evidence for macroscopic life during the Palaeoproterozoic era (2.5-1.6Gyr ago) is controversial. Except for the nearly 2-Gyr-old coil-shaped fossil Grypania spiralis, which may have been eukaryotic, evidence for morphological and taxonomic biodiversification of macroorganisms only occurs towards the beginning of the Mesoproterozoic era (1.6-1.0Gyr). Here we report the discovery of centimetre-sized structures from the 2.1-Gyr-old black shales of the Palaeoproterozoic Francevillian B Formation in Gabon, which we interpret as highly organized and spatially discrete populations of colonial organisms. The structures are up to 12cm in size and have characteristic shapes, with a simple but distinct ground pattern of flexible sheets and, usually, a permeating radial fabric. Geochemical analyses suggest that the sediments were deposited under an oxygenated water column. Carbon and sulphur isotopic data indicate that the structures were distinct biogenic objects, fossilized by pyritization early in the formation of the rock. The growth patterns deduced from the fossil morphologies suggest that the organisms showed cell-to-cell signalling and coordinated responses, as is commonly associated with multicellular organization. The Gabon fossils, occurring after the 2.45-2.32-Gyr increase in atmospheric oxygen concentration, may be seen as ancient representatives of multicellular life, which expanded so rapidly 1.5Gyr later, in the Cambrian explosion.

232 citations

Book
30 Nov 2010
TL;DR: In this paper, the major problems relating to the surface environment by using clay mineralogy as a unifying theme are discussed, and problems in soil chemistry, clay stability and clay kinetics in sedimentary rocks.
Abstract: This monograph discusses the major problems relating to the surface environment by using clay mineralogy as a unifying theme. Since the stability and development of illite, the most abundant and most common clay mineral, is the key to surface mineral dynamics, understanding its structure and transformation is an absolute prerequisite to understanding the problems of environmental change. Using illite as the frame, the authors describe problems in soil chemistry, clay stability and clay kinetics in sedimentary rocks. This book is valuable for graduate students, scientists and researchers in the fields of sedimentology, sediment petrography and soil sciences.

163 citations


Cited by
More filters
Journal ArticleDOI
01 Oct 1971-Nature
TL;DR: Lipson and Steeple as mentioned in this paper interpreted X-ray powder diffraction patterns and found that powder-diffraction patterns can be represented by a set of 3-dimensional planes.
Abstract: Interpretation of X-ray Powder Diffraction Patterns . By H. Lipson and H. Steeple. Pp. viii + 335 + 3 plates. (Mac-millan: London; St Martins Press: New York, May 1970.) £4.

1,867 citations

Journal ArticleDOI
TL;DR: The ubiquity and importance of microbes in biosphere processes make geomicrobiology one of the most important concepts within microbiology, and one requiring an interdisciplinary approach to define environmental and applied significance and underpin exploitation in biotechnology.
Abstract: Microbes play key geoactive roles in the biosphere, particularly in the areas of element biotransformations and biogeochemical cycling, metal and mineral transformations, decomposition, bioweathering, and soil and sediment formation. All kinds of microbes, including prokaryotes and eukaryotes and their symbiotic associations with each other and 'higher organisms', can contribute actively to geological phenomena, and central to many such geomicrobial processes are transformations of metals and minerals. Microbes have a variety of properties that can effect changes in metal speciation, toxicity and mobility, as well as mineral formation or mineral dissolution or deterioration. Such mechanisms are important components of natural biogeochemical cycles for metals as well as associated elements in biomass, soil, rocks and minerals, e.g. sulfur and phosphorus, and metalloids, actinides and metal radionuclides. Apart from being important in natural biosphere processes, metal and mineral transformations can have beneficial or detrimental consequences in a human context. Bioremediation is the application of biological systems to the clean-up of organic and inorganic pollution, with bacteria and fungi being the most important organisms for reclamation, immobilization or detoxification of metallic and radionuclide pollutants. Some biominerals or metallic elements deposited by microbes have catalytic and other properties in nanoparticle, crystalline or colloidal forms, and these are relevant to the development of novel biomaterials for technological and antimicrobial purposes. On the negative side, metal and mineral transformations by microbes may result in spoilage and destruction of natural and synthetic materials, rock and mineral-based building materials (e.g. concrete), acid mine drainage and associated metal pollution, biocorrosion of metals, alloys and related substances, and adverse effects on radionuclide speciation, mobility and containment, all with immense social and economic consequences. The ubiquity and importance of microbes in biosphere processes make geomicrobiology one of the most important concepts within microbiology, and one requiring an interdisciplinary approach to define environmental and applied significance and underpin exploitation in biotechnology.

1,550 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyze measurements, conceptual pictures, and mathematical models of flow and transport phenomena in fractured rock systems, including water flow, conservative and reactive solutes, and two-phase flow.

1,267 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide guidelines for the accurate and practical estimation of exponents and fractal dimensions of natural fracture systems, including length, displacement and aperture power law exponents.
Abstract: Scaling in fracture systems has become an active field of research in the last 25 years motivated by practical applications in hazardous waste disposal, hy- drocarbon reservoir management, and earthquake haz- ard assessment. Relevant publications are therefore spread widely through the literature. Although it is rec- ognized that some fracture systems are best described by scale-limited laws (lognormal, exponential), it is now recognized that power laws and fractal geometry provide widely applicable descriptive tools for fracture system characterization. A key argument for power law and fractal scaling is the absence of characteristic length scales in the fracture growth process. All power law and fractal characteristics in nature must have upper and lower bounds. This topic has been largely neglected, but recent studies emphasize the importance of layering on all scales in limiting the scaling characteristics of natural fracture systems. The determination of power law expo- nents and fractal dimensions from observations, al- though outwardly simple, is problematic, and uncritical use of analysis techniques has resulted in inaccurate and even meaningless exponents. We review these tech- niques and suggest guidelines for the accurate and ob- jective estimation of exponents and fractal dimensions. Syntheses of length, displacement, aperture power law exponents, and fractal dimensions are found, after crit- ical appraisal of published studies, to show a wide vari- ation, frequently spanning the theoretically possible range. Extrapolations from one dimension to two and from two dimensions to three are found to be nontrivial, and simple laws must be used with caution. Directions for future research include improved techniques for gathering data sets over great scale ranges and more rigorous application of existing analysis methods. More data are needed on joints and veins to illuminate the differences between different fracture modes. The phys- ical causes of power law scaling and variation in expo- nents and fractal dimensions are still poorly understood.

1,153 citations

Journal ArticleDOI
03 Nov 2011-Nature
TL;DR: Clay minerals, recently discovered to be widespread in Mars’s Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago, and available data indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachia rock record dominated by evidence of subsurface waters.
Abstract: Clay minerals, recently discovered to be widespread in Mars’s Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars’s surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.

720 citations