scispace - formally typeset
Search or ask a question
Author

Alan C. Luntz

Other affiliations: University of California, Berkeley, Aarhus University, IBM  ...read more
Bio: Alan C. Luntz is an academic researcher from SLAC National Accelerator Laboratory. The author has contributed to research in topics: Battery (electricity) & Dissociation (chemistry). The author has an hindex of 49, co-authored 103 publications receiving 14125 citations. Previous affiliations of Alan C. Luntz include University of California, Berkeley & Aarhus University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors summarized the promise and challenges facing development of practical Li−air batteries and the current understanding of its chemistry, and showed that the fundamental battery chemistry during discharge is the electrochemical oxidation of lithium metal at the anode and reduction of oxygen from air at the cathode.
Abstract: The lithium−air system captured worldwide attention in 2009 as a possible battery for electric vehicle propulsion applications. If successfully developed, this battery could provide an energy source for electric vehicles rivaling that of gasoline in terms of usable energy density. However, there are numerous scientific and technical challenges that must be overcome if this alluring promise is to turn into reality. The fundamental battery chemistry during discharge is thought to be the electrochemical oxidation of lithium metal at the anode and reduction of oxygen from air at the cathode. With aprotic electrolytes, as used in Li-ion batteries, there is some evidence that the process can be reversed by applying an external potential, i.e., that such a battery can be electrically recharged. This paper summarizes the authors’ view of the promise and challenges facing development of practical Li−air batteries and the current understanding of its chemistry. However, it must be appreciated that this perspective ...

2,308 citations

Journal ArticleDOI
TL;DR: XPS and isotope labeling coupled with differential electrochemical mass spectrometry (DEMS) is used to show that small amounts of carbonates formed during discharge and charge of Li-O2 cells in ether electrolytes originate from reaction of Li2O2 both with the electrolyte and with the C cathode.
Abstract: We use XPS and isotope labeling coupled with differential electrochemical mass spectrometry (DEMS) to show that small amounts of carbonates formed during discharge and charge of Li–O2 cells in ether electrolytes originate from reaction of Li2O2 (or LiO2) both with the electrolyte and with the C cathode. Reaction with the cathode forms approximately a monolayer of Li2CO3 at the C–Li2O2 interface, while reaction with the electrolyte forms approximately a monolayer of carbonate at the Li2O2–electrolyte interface during charge. A simple electrochemical model suggests that the carbonate at the electrolyte–Li2O2 interface is responsible for the large potential increase during charging (and hence indirectly for the poor rechargeability). A theoretical charge-transport model suggests that the carbonate layer at the C–Li2O2 interface causes a 10–100 fold decrease in the exchange current density. These twin “interfacial carbonate problems” are likely general and will ultimately have to be overcome to produce a high...

998 citations

Journal ArticleDOI
Bryan D. McCloskey1, Donald S. Bethune1, Robert M. Shelby1, G. Girishkumar1, Alan C. Luntz1 
TL;DR: Coulometry has to be coupled with quantitative gas consumption and evolution data to properly characterize the rechargeability of Li-air batteries, and chemical and electrochemical electrolyte stability in the presence of lithium peroxide and its intermediates is essential to produce a truly reversible Li-O2 electrochemistry.
Abstract: Among the many important challenges facing the development of Li–air batteries, understanding the electrolyte’s role in producing the appropriate reversible electrochemistry (i.e., 2Li+ + O2 + 2e– ↔ Li2O2) is critical. Quantitative differential electrochemical mass spectrometry (DEMS), coupled with isotopic labeling of oxygen gas, was used to study Li–O2 electrochemistry in various solvents, including carbonates (typical Li ion battery solvents) and dimethoxyethane (DME). In conjunction with the gas-phase DEMS analysis, electrodeposits formed during discharge on Li–O2 cell cathodes were characterized using ex situ analytical techniques, such as X-ray diffraction and Raman spectroscopy. Carbonate-based solvents were found to irreversibly decompose upon cell discharge. DME-based cells, however, produced mainly lithium peroxide on discharge. Upon cell charge, the lithium peroxide both decomposed to evolve oxygen and oxidized DME at high potentials. Our results lead to two conclusions; (1) coulometry has to b...

959 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of the chiral stationary phase replacement of Na6(CO3)(SO4) with Na2SO4 at the Lawrence Berkeley National Laboratory for high-performance liquid chromatography of Na2CO3 with the objective of determining theinity of the CHBMs.
Abstract: Alan C. Luntz*,† and Bryan D. McCloskey‡,§ †SUNCAT, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States ‡Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

839 citations

Journal ArticleDOI
TL;DR: A general formalism describing an additive's tendency to trigger the solution process is presented, providing a rational design route for electrolytes that afford larger lithium-oxygen battery capacities.
Abstract: Given their high theoretical specific energy, lithium-oxygen batteries have received enormous attention as possible alternatives to current state-of-the-art rechargeable Li-ion batteries. However, the maximum discharge capacity in non-aqueous lithium-oxygen batteries is limited to a small fraction of its theoretical value due to the build-up of insulating lithium peroxide (Li₂O₂), the battery's primary discharge product. The discharge capacity can be increased if Li₂O₂ forms as large toroidal particles rather than as a thin conformal layer. Here, we show that trace amounts of electrolyte additives, such as H₂O, enhance the formation of Li₂O₂ toroids and result in significant improvements in capacity. Our experimental observations and a growth model show that the solvating properties of the additives prompt a solution-based mechanism that is responsible for the growth of Li₂O₂ toroids. We present a general formalism describing an additive's tendency to trigger the solution process, providing a rational design route for electrolytes that afford larger lithium-oxygen battery capacities.

689 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Abstract: Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.

7,895 citations

Journal ArticleDOI
TL;DR: Li-ion battery technology has become very important in recent years as these batteries show great promise as power sources that can lead us to the electric vehicle (EV) revolution as mentioned in this paper.
Abstract: Li-ion battery technology has become very important in recent years as these batteries show great promise as power sources that can lead us to the electric vehicle (EV) revolution. The development of new materials for Li-ion batteries is the focus of research in prominent groups in the field of materials science throughout the world. Li-ion batteries can be considered to be the most impressive success story of modern electrochemistry in the last two decades. They power most of today's portable devices, and seem to overcome the psychological barriers against the use of such high energy density devices on a larger scale for more demanding applications, such as EV. Since this field is advancing rapidly and attracting an increasing number of researchers, it is important to provide current and timely updates of this constantly changing technology. In this review, we describe the key aspects of Li-ion batteries: the basic science behind their operation, the most relevant components, anodes, cathodes, electrolyte solutions, as well as important future directions for R&D of advanced Li-ion batteries for demanding use, such as EV and load-leveling applications.

5,531 citations

Journal ArticleDOI
TL;DR: This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth, summarizing the theoretical and experimental achievements and endeavors to realize the practical applications of lithium metal batteries.
Abstract: The lithium metal battery is strongly considered to be one of the most promising candidates for high-energy-density energy storage devices in our modern and technology-based society. However, uncontrollable lithium dendrite growth induces poor cycling efficiency and severe safety concerns, dragging lithium metal batteries out of practical applications. This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth. First, the working principles and technical challenges of a lithium metal anode are underscored. Specific attention is paid to the mechanistic understandings and quantitative models for solid electrolyte interphase (SEI) formation, lithium dendrite nucleation, and growth. On the basis of previous theoretical understanding and analysis, recently proposed strategies to suppress dendrite growth of lithium metal anode and some other metal anodes are reviewed. A section dedicated to the potential of full-cell lithium metal batteries for practical applicatio...

3,812 citations