scispace - formally typeset
Search or ask a question
Author

Alan D. Watson

Bio: Alan D. Watson is an academic researcher from Nycomed. The author has contributed to research in topics: Iron sulfide & DOTA. The author has an hindex of 18, co-authored 32 publications receiving 1266 citations.

Papers
More filters
Journal ArticleDOI
Shi-Bao Yu1, Alan D. Watson1

410 citations

Patent
11 Feb 1993
TL;DR: In this article, tight molecular meshes, preferably curved in one or two directions, such as fullerenes and met-cars, are used as carriers for diagnostic or therapeutic agents, especially diagnostic imaging contrast agents.
Abstract: Compounds comprising tight molecular meshes, preferably curved in one or two directions, such as fullerenes and met-cars, may be used as carriers for diagnostic or therapeutic agents, especially diagnostic imaging contrast agents

130 citations

Journal ArticleDOI
TL;DR: T2*-sensitive echo-planar magnetic resonance imaging was used with first-pass magnetic susceptibility contrast enhancement in a cat model of acute regional stroke to evaluate the relationship between cerebral hypoperfusion and ischemic brain damage.
Abstract: T2*-sensitive echo-planar magnetic resonance imaging was used with first-pass magnetic susceptibility contrast enhancement in a cat model of acute regional stroke to evaluate the relationship between cerebral hypoperfusion and ischemic brain damage. In normal brain, dose-dependent decreases in signal intensity were observed after intravenous injection of 0.15-0.50 mmol/kg dysprosium-diethylenetriaminepentaacetic acid bismethylamide or gadodiamide injection. Shortly after unilateral occlusion of the middle cerebral artery, foci of signal hyperintensity on diffusion-weighted images were observed in the ipsilateral basal ganglia. Sixty minutes after occlusion, perfusion deficits in the ipsilateral parietal and temporal cortical gray matter were observed to be spatially correlated with areas of hyperintensity on diffusion-weighted images. When reflow was attempted after 60 minutes, delayed contrast agent transit suggestive of partial ischemic tissue injury was demonstrated. Attempts to produce reflow after 2 ...

127 citations

Journal ArticleDOI
TL;DR: The gadolinium complexes of poly-L-lysine-poly and poly-4,7,10-tetraazacyclodododecane and their conjugates with human serum albumin (HSA) have been prepared and characterized and the molar relaxities were 2-3-fold higher than those of the corresponding monomeric metal complexes.

108 citations

Patent
16 Jan 1990
TL;DR: In this article, a plurality of macrocyclic chelant moieties, e.g., DOTA residues, are conjugated to a polyamine backbone molecule, such as polylysine, to produce a site-specific polychelate.
Abstract: There are provided polychelants and their metal chelates which are useful in diagnostic imaging and in radiotherapy and which comprise a plurality of macrocyclic chelant moieties, e.g, DOTA residues, conjugated to a polyamine backbone molecule, e.g, polylysine. To produce a site-specific polychelate, one or more of the macrocyclic chelant carrying backbone molecules may be conjugated to a site-directed macromolecule, e.g. a protein.

84 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A. Relaxivity 2331 E. Outerand Second-Sphere relaxivity 2334 F. Methods of Improving Relaxivity 2336 V. Macromolecular Conjugates 2336.
Abstract: A. Water Exchange 2326 B. Proton Exchange 2327 C. Electronic Relaxation 2327 D. Relaxivity 2331 E. Outerand Second-Sphere Relaxivity 2334 F. Methods of Improving Relaxivity 2336 V. Macromolecular Conjugates 2336 A. Introduction 2336 B. General Conjugation Methods 2336 C. Synthetic Linear Polymers 2336 D. Synthetic Dendrimer-Based Agents 2338 E. Naturally Occurring Polymers (Proteins, Polysaccharides, and Nucleic Acids) 2339

4,125 citations

Journal ArticleDOI
TL;DR: Although still at a very early stage of development, NMOFs have already shown great promise as a novel platform for nanomedicine and should allow for the incorporation of other imaging and therapeutic agents and their effective delivery to targeted cells in vivo.
Abstract: Metal–organic frameworks (MOFs), a class of hybrid materials formed by the self-assembly of polydentate bridging ligands and metal-connecting points, have been studied for a variety of applications. Recently, these materials have been scaled down to nanometer sizes, and this Account details the development of nanoscale metal–organic frameworks (NMOFs) for biomedical applications. NMOFs possess several potential advantages over conventional nanomedicines such as their structural and chemical diversity, their high loading capacity, and their intrinsic biodegradability. Under relatively mild conditions, NMOFs can be obtained as either crystalline or amorphous materials. The particle composition, size, and morphology can be easily tuned to optimize the final particle properties. Researchers have employed two general strategies to deliver active agents using NMOFs: by incorporating active agents into the frameworks or by loading active agents into the pores and channels of the NMOFs. The modification of NMOF s...

1,780 citations

Journal ArticleDOI
TL;DR: Gold nanoparticles can be used as X-ray contrast agents with properties that overcome some significant limitations of iodine-based agents, and this report is the first demonstration that gold nanoparticles may overcome these limitations.
Abstract: There have been few fundamental improvements in clinical X-ray contrast agents in more than 25 years, and the chemical platform of tri-iodobenzene has not changed. Current agents impose serious limitations on medical imaging: short imaging times, the need for catheterization in many cases, occasional renal toxicity, and poor contrast in large patients. This report is the first demonstration that gold nanoparticles may overcome these limitations. Gold has higher absorption than iodine with less bone and tissue interference achieving better contrast with lower X-ray dose. Nanoparticles clear the blood more slowly than iodine agents, permitting longer imaging times. Gold nanoparticles, 1.9 nm in diameter, were injected intravenously into mice and images recorded over time with a standard mammography unit. Gold biodistribution was measured by atomic absorption. Retention in liver and spleen was low with elimination by the kidneys. Organs such as kidneys and tumours were seen with unusual clarity and high spatial resolution. Blood vessels less than 100 mm in diameter were delineated, thus enabling in vivo vascular casting. Regions of increased vascularization and angiogenesis could be distinguished. With 10 mg Au ml 21 initially in the blood, mouse behaviour was unremarkable and neither blood plasma analytes nor organ histology revealed any evidence of toxicity 11 days and 30 days after injection. Gold nanoparticles can be used as X-ray contrast agents with properties that overcome some significant limitations of iodine-based agents.

1,238 citations

Journal ArticleDOI
TL;DR: Because stroke is common and in the differential diagnosis of most acute neurologic events, diffusion-weighted MR imaging should be considered an essential sequence, and its use in most brain MR studies is recommended.
Abstract: Diffusion-weighted magnetic resonance (MR) imaging provides image contrast that is different from that provided by conventional MR techniques. It is particularly sensitive for detection of acute ischemic stroke and differentiation of acute stroke from other processes that manifest with sudden neurologic deficits. Diffusion-weighted MR imaging also provides adjunctive information for other cerebral diseases including neoplasms, intracranial infections, traumatic brain injury, and demyelinating processes. Because stroke is common and in the differential diagnosis of most acute neurologic events, diffusion-weighted MR imaging should be considered an essential sequence, and its use in most brain MR studies is recommended.

988 citations

Journal ArticleDOI
TL;DR: The theoretical background defining its strength and directionality, a systematic analysis of its occurrence and interaction geometries in protein-ligand complexes, and recent examples where halogen bonding has been successfully harnessed for lead identification and optimization are provided.
Abstract: Halogen bonding has been known in material science for decades, but until recently, halogen bonds in protein–ligand interactions were largely the result of serendipitous discovery rather than rational design. In this Perspective, we provide insights into the phenomenon of halogen bonding, with special focus on its role in drug discovery. We summarize the theoretical background defining its strength and directionality, provide a systematic analysis of its occurrence and interaction geometries in protein–ligand complexes, and give recent examples where halogen bonding has been successfully harnessed for lead identification and optimization. In light of these data, we discuss the potential and limitations of exploiting halogen bonds for molecular recognition and rational drug design.

934 citations