scispace - formally typeset
Search or ask a question
Author

Alan Fried

Bio: Alan Fried is an academic researcher from Institute of Arctic and Alpine Research. The author has contributed to research in topics: Laser & Tunable diode laser absorption spectroscopy. The author has an hindex of 62, co-authored 254 publications receiving 11192 citations. Previous affiliations of Alan Fried include National Center for Atmospheric Research & Texas Tech University.


Papers
More filters
Book ChapterDOI
01 Jan 2003
TL;DR: In this paper, the authors discuss recent developments of mid-infrared laser sources, with emphasis on established and new spectroscopic techniques and their applications for sensitive, selective, and quantitative trace gas detection.
Abstract: The vast majority of gaseous chemical substances exhibit fundamental vibrational absorption bands in the mid-infrared spectral region (≈ 2–25 µm), and the absorption of light by these fundamental bands provides a nearly universal means for their detection. A main feature of optical techniques is the non-intrusive in situ detection capability for trace gases. The focus time period of this chapter is the years 1996–2002 and we will discuss primarily CW mid-infrared laser spectroscopy. We shall not attempt to review the large number of diverse mid-infrared spectroscopic laser applications published to date. The scope of this chapter is rather to discuss recent developments of mid-infrared laser sources, with emphasis on established and new spectroscopic techniques and their applications for sensitive, selective, and quantitative trace gas detection. For example, laboratory based spectroscopic studies and chemical kinetics, which will also benefit from new laser source and technique developments, will not be considered.

419 citations

Journal ArticleDOI
TL;DR: The first detailed field measurements of biomass burning (BB) emissions in the Northern Hemisphere tropics as part of the MILAGRO project were made by two instrumented aircraft were the National Center for Atmospheric Research C-130 and a University of Montana/US Forest Service Twin Otter.
Abstract: . In March 2006 two instrumented aircraft made the first detailed field measurements of biomass burning (BB) emissions in the Northern Hemisphere tropics as part of the MILAGRO project. The aircraft were the National Center for Atmospheric Research C-130 and a University of Montana/US Forest Service Twin Otter. The initial emissions of up to 49 trace gas or particle species were measured from 20 deforestation and crop residue fires on the Yucatan peninsula. This included two trace gases useful as indicators of BB (HCN and acetonitrile) and several rarely, or never before, measured species: OH, peroxyacetic acid, propanoic acid, hydrogen peroxide, methane sulfonic acid, and sulfuric acid. Crop residue fires emitted more organic acids and ammonia than deforestation fires, but the emissions from the main fire types were otherwise fairly similar. The Yucatan fires emitted unusually high amounts of SO2 and particle chloride, likely due to a strong marine influence on this peninsula. As smoke from one fire aged, the ratio ΔO3/ΔCO increased to ~15% in 1×107 molecules/cm3) that were likely caused in part by high initial HONO (~10% of NOy). Thus, more research is needed to understand critical post emission processes for the second-largest trace gas source on Earth. It is estimated that ~44 Tg of biomass burned in the Yucatan in the spring of 2006. Mexican BB (including Yucatan BB) and urban emissions from the Mexico City area can both influence the March-May air quality in much of Mexico and the US.

403 citations

Journal ArticleDOI
TL;DR: In this article, the initial hydrocarbon reactivity in petrochemical source plumes in the Houston, TX, metropolitan area is primarily due to routine emissions of the alkenes propene and ethene.
Abstract: [1] Petrochemical industrial facilities can emit large amounts of highly reactive hydrocarbons and NOx to the atmosphere; in the summertime, such colocated emissions are shown to consistently result in rapid and efficient ozone (O3) formation downwind. Airborne measurements show initial hydrocarbon reactivity in petrochemical source plumes in the Houston, TX, metropolitan area is primarily due to routine emissions of the alkenes propene and ethene. Reported emissions of these highly reactive compounds are substantially lower than emissions inferred from measurements in the plumes from these sources. Net O3 formation rates and yields per NOx molecule oxidized in these petrochemical industrial source plumes are substantially higher than rates and yields observed in urban or rural power plant plumes. These observations suggest that reductions in reactive alkene emissions from petrochemical industrial sources are required to effectively address the most extreme O3 exceedences in the Houston metropolitan area.

300 citations

Journal ArticleDOI
TL;DR: In this article, the authors used observations from two aircraft during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) campaign over the eastern United States and North Atlantic during summer 2004, interpreted with a global 3-D model of tropospheric chemistry (GEOS-Chem) to test current understanding of the regional sources, chemical evolution, and export of nitrogen oxides.
Abstract: We use observations from two aircraft during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) campaign over the eastern United States and North Atlantic during summer 2004, interpreted with a global 3-D model of tropospheric chemistry (GEOS-Chem) to test current understanding of the regional sources, chemical evolution, and export of nitrogen oxides. The boundary layer NO(x) data provide top-down verification of a 50% decrease in power plant and industry NO(x) emissions over the eastern United States between 1999 and 2004. Observed 8-12 8 km NO(x) concentrations in ICARTT were 0.55 +/- 36 ppbv, much larger than in previous United States aircraft campaigns (ELCHEM, SUCCESS, SONEX). We show that regional lightning was the dominant source of this NO(x) and increased upper tropospheric ozone by 10 ppbv. Simulating the ICARTT upper tropospheric NO(x) observations with GEOS-Chem require a factor of 4 increase in the model NO(x) yield per flash (to 500 mol/flash). Observed OH concentrations were a factor of 2 lower than can be explained from current photochemical models, and if correct would imply a broader lightning influence in the upper troposphere than presently thought.An NO(y)-CO correlation analysis of the fraction f of North American NO(x) emissions vented to the free troposphere as NO(y) (sum of NO(x) and its oxidation products PAN and HNO3) s shows observed f=16+/-10 percent and modeled f=14 +/- 8 percent, consistent with previous studies. Export to the lower free troposphere is mostly HNO3 but at higher altitudes is mostly PAN. The model successfully simulates NO(y) export efficiency and speciation, supporting previous model estimates of a large U.S. contribution to tropospheric ozone through NO(x) and PAN export.

276 citations

Journal ArticleDOI
TL;DR: In this article, a large number of oxygenated volatile organic chemicals (OVOC) measurements were carried out in the Pacific troposphere (0.1-12 km) in winter/spring of 2001 (24 February to 10 April).
Abstract: Airborne measurements of a large number of oxygenated volatile organic chemicals (OVOC) were carried out in the Pacific troposphere (0.1-12 km) in winter/spring of 2001 (24 February to 10 April). Specifically, these measurements included acetone (CH3COCH3), methylethyl ketone (CH3COC2H5, MEK), methanol (CH3OH), ethanol (C2H5OH), acetaldehyde (CH3CHO), propionaldehyde (C2H5CHO), peroxyacylnitrates (PANs) (C(sub n)H(sub 2n+1)COO2NO2), and organic nitrates (C(sub n)H(sub 2n+1)ONO2). Complementary measurements of formaldehyde (HCHO), methyl hydroperoxide (CH3OOH), and selected tracers were also available. OVOC were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Background mixing ratios were typically highest in the lower troposphere and declined toward the upper troposphere and the lowermost stratosphere. Their total abundance (Summation of OVOC) was nearly twice that of nonmethane hydrocarbons (Summation of C2-C8 NMHC). Throughout the troposphere, the OH reactivity of OVOC is comparable to that of methane and far exceeds that of NMHC. A comparison of these data with western Pacific observations collected some 7 years earlier (February-March 1994) did not reveal significant differences. Mixing ratios of OVOC were strongly correlated with each other as well as with tracers of fossil and biomass/biofuel combustion. Analysis of the relative enhancement of selected OVOC with respect to CH3Cl and CO in 12 plumes originating from fires and sampled in the free troposphere (3-11 km) is used to assess their primary and secondary emissions from biomass combustion. The composition of these plumes also indicates a large shift of reactive nitrogen into the PAN reservoir thereby limiting ozone formation. A three-dimensional global model that uses state of the art chemistry and source information is used to compare measured and simulated mixing ratios of selected OVOC. While there is reasonable agreement in many cases, measured aldehyde concentrations are significantly larger than predicted. At their observed levels, acetaldehyde mixing ratios are shown to be an important source of HCHO (and HO x ) and PAN in the troposphere. On the basis of presently known chemistry, measured mixing ratios of aldehydes and PANs are mutually incompatible. We provide rough estimates of the global sources of several OVOC and conclude that collectively these are extremely large (150-500 Tg C / yr) but remain poorly quantified.

267 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity, and molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth.
Abstract: This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. A powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided.

7,638 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

4,591 citations

Journal ArticleDOI
TL;DR: The Model of Emissions of Gases and Aerosols from Nature (MEGAN) is used to quantify net terrestrial biosphere emission of isoprene into the atmosphere as mentioned in this paper.
Abstract: . Reactive gases and aerosols are produced by terrestrial ecosystems, processed within plant canopies, and can then be emitted into the above-canopy atmosphere. Estimates of the above-canopy fluxes are needed for quantitative earth system studies and assessments of past, present and future air quality and climate. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) is described and used to quantify net terrestrial biosphere emission of isoprene into the atmosphere. MEGAN is designed for both global and regional emission modeling and has global coverage with ~1 km2 spatial resolution. Field and laboratory investigations of the processes controlling isoprene emission are described and data available for model development and evaluation are summarized. The factors controlling isoprene emissions include biological, physical and chemical driving variables. MEGAN driving variables are derived from models and satellite and ground observations. Tropical broadleaf trees contribute almost half of the estimated global annual isoprene emission due to their relatively high emission factors and because they are often exposed to conditions that are conducive for isoprene emission. The remaining flux is primarily from shrubs which have a widespread distribution. The annual global isoprene emission estimated with MEGAN ranges from about 500 to 750 Tg isoprene (440 to 660 Tg carbon) depending on the driving variables which include temperature, solar radiation, Leaf Area Index, and plant functional type. The global annual isoprene emission estimated using the standard driving variables is ~600 Tg isoprene. Differences in driving variables result in emission estimates that differ by more than a factor of three for specific times and locations. It is difficult to evaluate isoprene emission estimates using the concentration distributions simulated using chemistry and transport models, due to the substantial uncertainties in other model components, but at least some global models produce reasonable results when using isoprene emission distributions similar to MEGAN estimates. In addition, comparison with isoprene emissions estimated from satellite formaldehyde observations indicates reasonable agreement. The sensitivity of isoprene emissions to earth system changes (e.g., climate and land-use) demonstrates the potential for large future changes in emissions. Using temperature distributions simulated by global climate models for year 2100, MEGAN estimates that isoprene emissions increase by more than a factor of two. This is considerably greater than previous estimates and additional observations are needed to evaluate and improve the methods used to predict future isoprene emissions.

3,746 citations

Journal ArticleDOI
TL;DR: The present status of knowledge of the gas phase reactions of inorganic Ox, Hox and NOx species and of selected classes of volatile organic compounds (VOCs) and their degradation products in the troposphere is discussed in this paper.

2,722 citations

Journal Article
TL;DR: Denman et al. as discussed by the authors presented the Couplings between changes in the climate system and biogeochemistry Coordinating Lead Authors: Kenneth L. Denman (Canada), Guy Brasseur (USA, Germany), Amnat Chidthaisong (Thailand), Philippe Ciais (France), Peter M. Cox (UK), Robert E. Austin (USA), D.B. Wofsy (USA) and Xiaoye Zhang (China).
Abstract: Couplings Between Changes in the Climate System and Biogeochemistry Coordinating Lead Authors: Kenneth L. Denman (Canada), Guy Brasseur (USA, Germany) Lead Authors: Amnat Chidthaisong (Thailand), Philippe Ciais (France), Peter M. Cox (UK), Robert E. Dickinson (USA), Didier Hauglustaine (France), Christoph Heinze (Norway, Germany), Elisabeth Holland (USA), Daniel Jacob (USA, France), Ulrike Lohmann (Switzerland), Srikanthan Ramachandran (India), Pedro Leite da Silva Dias (Brazil), Steven C. Wofsy (USA), Xiaoye Zhang (China) Contributing Authors: D. Archer (USA), V. Arora (Canada), J. Austin (USA), D. Baker (USA), J.A. Berry (USA), R. Betts (UK), G. Bonan (USA), P. Bousquet (France), J. Canadell (Australia), J. Christian (Canada), D.A. Clark (USA), M. Dameris (Germany), F. Dentener (EU), D. Easterling (USA), V. Eyring (Germany), J. Feichter (Germany), P. Friedlingstein (France, Belgium), I. Fung (USA), S. Fuzzi (Italy), S. Gong (Canada), N. Gruber (USA, Switzerland), A. Guenther (USA), K. Gurney (USA), A. Henderson-Sellers (Switzerland), J. House (UK), A. Jones (UK), C. Jones (UK), B. Karcher (Germany), M. Kawamiya (Japan), K. Lassey (New Zealand), C. Le Quere (UK, France, Canada), C. Leck (Sweden), J. Lee-Taylor (USA, UK), Y. Malhi (UK), K. Masarie (USA), G. McFiggans (UK), S. Menon (USA), J.B. Miller (USA), P. Peylin (France), A. Pitman (Australia), J. Quaas (Germany), M. Raupach (Australia), P. Rayner (France), G. Rehder (Germany), U. Riebesell (Germany), C. Rodenbeck (Germany), L. Rotstayn (Australia), N. Roulet (Canada), C. Sabine (USA), M.G. Schultz (Germany), M. Schulz (France, Germany), S.E. Schwartz (USA), W. Steffen (Australia), D. Stevenson (UK), Y. Tian (USA, China), K.E. Trenberth (USA), T. Van Noije (Netherlands), O. Wild (Japan, UK), T. Zhang (USA, China), L. Zhou (USA, China) Review Editors: Kansri Boonpragob (Thailand), Martin Heimann (Germany, Switzerland), Mario Molina (USA, Mexico) This chapter should be cited as: Denman, K.L., G. Brasseur, A. Chidthaisong, P. Ciais, P.M. Cox, R.E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S Ramachandran, P.L. da Silva Dias, S.C. Wofsy and X. Zhang, 2007: Couplings Between Changes in the Climate System and Biogeochemistry. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

2,208 citations