scispace - formally typeset

Author

Alan Jeffrey

Bio: Alan Jeffrey is an academic researcher. The author has contributed to research in topic(s): Legendre function & Legendre form. The author has an hindex of 3, co-authored 3 publication(s) receiving 32237 citation(s).
Papers
More filters

Book
01 Jan 1943
Abstract: 0 Introduction 1 Elementary Functions 2 Indefinite Integrals of Elementary Functions 3 Definite Integrals of Elementary Functions 4.Combinations involving trigonometric and hyperbolic functions and power 5 Indefinite Integrals of Special Functions 6 Definite Integrals of Special Functions 7.Associated Legendre Functions 8 Special Functions 9 Hypergeometric Functions 10 Vector Field Theory 11 Algebraic Inequalities 12 Integral Inequalities 13 Matrices and related results 14 Determinants 15 Norms 16 Ordinary differential equations 17 Fourier, Laplace, and Mellin Transforms 18 The z-transform

27,337 citations




Cited by
More filters

Journal ArticleDOI
Abstract: This paper introduces an ARCH model (exponential ARCH) that (1) allows correlation between returns and volatility innovations (an important feature of stock market volatility changes), (2) eliminates the need for inequality constraints on parameters, and (3) allows for a straightforward interpretation of the "persistence" of shocks to volatility. In the above respects, it is an improvement over the widely-used GARCH model. The model is applied to study volatility changes and the risk premium on the CRSP Value-Weighted Market Index from 1962 to 1987. Copyright 1991 by The Econometric Society.

9,393 citations


Journal ArticleDOI
Yariv Ephraim1, David Malah2Institutions (2)
Abstract: This paper focuses on the class of speech enhancement systems which capitalize on the major importance of the short-time spectral amplitude (STSA) of the speech signal in its perception. A system which utilizes a minimum mean-square error (MMSE) STSA estimator is proposed and then compared with other widely used systems which are based on Wiener filtering and the "spectral subtraction" algorithm. In this paper we derive the MMSE STSA estimator, based on modeling speech and noise spectral components as statistically independent Gaussian random variables. We analyze the performance of the proposed STSA estimator and compare it with a STSA estimator derived from the Wiener estimator. We also examine the MMSE STSA estimator under uncertainty of signal presence in the noisy observations. In constructing the enhanced signal, the MMSE STSA estimator is combined with the complex exponential of the noisy phase. It is shown here that the latter is the MMSE estimator of the complex exponential of the original phase, which does not affect the STSA estimation. The proposed approach results in a significant reduction of the noise, and provides enhanced speech with colorless residual noise. The complexity of the proposed algorithm is approximately that of other systems in the discussed class.

3,775 citations


Journal ArticleDOI
W. Michael Hanemann1Institutions (1)
Abstract: Since the work of Bishop and Heberlein, a number of contingent valuation experiments have appeared involving discrete responses which are analyzed by logit or similar techniques. This paper addresses the issues of how the logit models should be formulated to be consistent with the hypothesis of utility maximization and how measures of compensating and equivalent surplus should be derived from the fitted models. Two distinct types of welfare measures are introduced and then estimated from Bishop and Heberlein's data.

2,685 citations


Journal ArticleDOI
Abstract: A multiplicity of autonomous terminals simultaneously transmits data streams to a compact array of antennas. The array uses imperfect channel-state information derived from transmitted pilots to extract the individual data streams. The power radiated by the terminals can be made inversely proportional to the square-root of the number of base station antennas with no reduction in performance. In contrast if perfect channel-state information were available the power could be made inversely proportional to the number of antennas. Lower capacity bounds for maximum-ratio combining (MRC), zero-forcing (ZF) and minimum mean-square error (MMSE) detection are derived. An MRC receiver normally performs worse than ZF and MMSE. However as power levels are reduced, the cross-talk introduced by the inferior maximum-ratio receiver eventually falls below the noise level and this simple receiver becomes a viable option. The tradeoff between the energy efficiency (as measured in bits/J) and spectral efficiency (as measured in bits/channel use/terminal) is quantified for a channel model that includes small-scale fading but not large-scale fading. It is shown that the use of moderately large antenna arrays can improve the spectral and energy efficiency with orders of magnitude compared to a single-antenna system.

2,568 citations


Journal ArticleDOI
Ivo Babuška1, Jens Markus Melenk2Institutions (2)
Abstract: A new finite element method is presented that features the ability to include in the finite element space knowledge about the partial differential equation being solved This new method can therefore be more efficient than the usual finite element methods An additional feature of the partition-of-unity method is that finite element spaces of any desired regularity can be constructed very easily This paper includes a convergence proof of this method and illustrates its efficiency by an application to the Helmholtz equation for high wave numbers The basic estimates for a posteriori error estimation for this new method are also proved © 1997 by John Wiley & Sons, Ltd

2,217 citations


Performance
Metrics

Author's H-index: 3

No. of papers from the Author in previous years
YearPapers
20071
19971
19431