scispace - formally typeset
Search or ask a question
Author

Alan K. Jarmusch

Bio: Alan K. Jarmusch is an academic researcher from University of Montana. The author has contributed to research in topics: Mass spectrometry & Ambient ionization. The author has an hindex of 29, co-authored 62 publications receiving 6425 citations. Previous affiliations of Alan K. Jarmusch include University of California & University of North Carolina at Greensboro.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
Evan Bolyen1, Jai Ram Rideout1, Matthew R. Dillon1, Nicholas A. Bokulich1, Christian C. Abnet2, Gabriel A. Al-Ghalith3, Harriet Alexander4, Harriet Alexander5, Eric J. Alm6, Manimozhiyan Arumugam7, Francesco Asnicar8, Yang Bai9, Jordan E. Bisanz10, Kyle Bittinger11, Asker Daniel Brejnrod7, Colin J. Brislawn12, C. Titus Brown4, Benjamin J. Callahan13, Andrés Mauricio Caraballo-Rodríguez14, John Chase1, Emily K. Cope1, Ricardo Silva14, Christian Diener15, Pieter C. Dorrestein14, Gavin M. Douglas16, Daniel M. Durall17, Claire Duvallet6, Christian F. Edwardson, Madeleine Ernst18, Madeleine Ernst14, Mehrbod Estaki17, Jennifer Fouquier19, Julia M. Gauglitz14, Sean M. Gibbons15, Sean M. Gibbons20, Deanna L. Gibson17, Antonio Gonzalez14, Kestrel Gorlick1, Jiarong Guo21, Benjamin Hillmann3, Susan Holmes22, Hannes Holste14, Curtis Huttenhower23, Curtis Huttenhower24, Gavin A. Huttley25, Stefan Janssen26, Alan K. Jarmusch14, Lingjing Jiang14, Benjamin D. Kaehler25, Benjamin D. Kaehler27, Kyo Bin Kang28, Kyo Bin Kang14, Christopher R. Keefe1, Paul Keim1, Scott T. Kelley29, Dan Knights3, Irina Koester14, Tomasz Kosciolek14, Jorden Kreps1, Morgan G. I. Langille16, Joslynn S. Lee30, Ruth E. Ley31, Ruth E. Ley32, Yong-Xin Liu, Erikka Loftfield2, Catherine A. Lozupone19, Massoud Maher14, Clarisse Marotz14, Bryan D Martin20, Daniel McDonald14, Lauren J. McIver23, Lauren J. McIver24, Alexey V. Melnik14, Jessica L. Metcalf33, Sydney C. Morgan17, Jamie Morton14, Ahmad Turan Naimey1, Jose A. Navas-Molina14, Jose A. Navas-Molina34, Louis-Félix Nothias14, Stephanie B. Orchanian, Talima Pearson1, Samuel L. Peoples35, Samuel L. Peoples20, Daniel Petras14, Mary L. Preuss36, Elmar Pruesse19, Lasse Buur Rasmussen7, Adam R. Rivers37, Michael S. Robeson38, Patrick Rosenthal36, Nicola Segata8, Michael Shaffer19, Arron Shiffer1, Rashmi Sinha2, Se Jin Song14, John R. Spear39, Austin D. Swafford, Luke R. Thompson40, Luke R. Thompson41, Pedro J. Torres29, Pauline Trinh20, Anupriya Tripathi14, Peter J. Turnbaugh10, Sabah Ul-Hasan42, Justin J. J. van der Hooft43, Fernando Vargas, Yoshiki Vázquez-Baeza14, Emily Vogtmann2, Max von Hippel44, William A. Walters32, Yunhu Wan2, Mingxun Wang14, Jonathan Warren45, Kyle C. Weber46, Kyle C. Weber37, Charles H. D. Williamson1, Amy D. Willis20, Zhenjiang Zech Xu14, Jesse R. Zaneveld20, Yilong Zhang47, Qiyun Zhu14, Rob Knight14, J. Gregory Caporaso1 
TL;DR: QIIME 2 development was primarily funded by NSF Awards 1565100 to J.G.C. and R.K.P. and partial support was also provided by the following: grants NIH U54CA143925 and U54MD012388.
Abstract: QIIME 2 development was primarily funded by NSF Awards 1565100 to J.G.C. and 1565057 to R.K. Partial support was also provided by the following: grants NIH U54CA143925 (J.G.C. and T.P.) and U54MD012388 (J.G.C. and T.P.); grants from the Alfred P. Sloan Foundation (J.G.C. and R.K.); ERCSTG project MetaPG (N.S.); the Strategic Priority Research Program of the Chinese Academy of Sciences QYZDB-SSW-SMC021 (Y.B.); the Australian National Health and Medical Research Council APP1085372 (G.A.H., J.G.C., Von Bing Yap and R.K.); the Natural Sciences and Engineering Research Council (NSERC) to D.L.G.; and the State of Arizona Technology and Research Initiative Fund (TRIF), administered by the Arizona Board of Regents, through Northern Arizona University. All NCI coauthors were supported by the Intramural Research Program of the National Cancer Institute. S.M.G. and C. Diener were supported by the Washington Research Foundation Distinguished Investigator Award.

8,821 citations

Posted ContentDOI
Evan Bolyen1, Jai Ram Rideout1, Matthew R. Dillon1, Nicholas A. Bokulich1, Christian C. Abnet, Gabriel A. Al-Ghalith2, Harriet Alexander3, Harriet Alexander4, Eric J. Alm5, Manimozhiyan Arumugam6, Francesco Asnicar7, Yang Bai8, Jordan E. Bisanz9, Kyle Bittinger10, Asker Daniel Brejnrod6, Colin J. Brislawn11, C. Titus Brown4, Benjamin J. Callahan12, Andrés Mauricio Caraballo-Rodríguez13, John Chase1, Emily K. Cope1, Ricardo Silva13, Pieter C. Dorrestein13, Gavin M. Douglas14, Daniel M. Durall15, Claire Duvallet5, Christian F. Edwardson16, Madeleine Ernst13, Mehrbod Estaki15, Jennifer Fouquier17, Julia M. Gauglitz13, Deanna L. Gibson15, Antonio Gonzalez18, Kestrel Gorlick1, Jiarong Guo19, Benjamin Hillmann2, Susan Holmes20, Hannes Holste18, Curtis Huttenhower21, Curtis Huttenhower22, Gavin A. Huttley23, Stefan Janssen24, Alan K. Jarmusch13, Lingjing Jiang18, Benjamin D. Kaehler23, Kyo Bin Kang25, Kyo Bin Kang13, Christopher R. Keefe1, Paul Keim1, Scott T. Kelley26, Dan Knights2, Irina Koester13, Irina Koester18, Tomasz Kosciolek18, Jorden Kreps1, Morgan G. I. Langille14, Joslynn S. Lee27, Ruth E. Ley28, Ruth E. Ley29, Yong-Xin Liu8, Erikka Loftfield, Catherine A. Lozupone17, Massoud Maher18, Clarisse Marotz18, Bryan D Martin30, Daniel McDonald18, Lauren J. McIver22, Lauren J. McIver21, Alexey V. Melnik13, Jessica L. Metcalf31, Sydney C. Morgan15, Jamie Morton18, Ahmad Turan Naimey1, Jose A. Navas-Molina32, Jose A. Navas-Molina18, Louis-Félix Nothias13, Stephanie B. Orchanian18, Talima Pearson1, Samuel L. Peoples33, Samuel L. Peoples30, Daniel Petras13, Mary L. Preuss34, Elmar Pruesse17, Lasse Buur Rasmussen6, Adam R. Rivers35, Ii Michael S Robeson36, Patrick Rosenthal34, Nicola Segata7, Michael Shaffer17, Arron Shiffer1, Rashmi Sinha, Se Jin Song18, John R. Spear37, Austin D. Swafford18, Luke R. Thompson38, Luke R. Thompson39, Pedro J. Torres26, Pauline Trinh30, Anupriya Tripathi18, Anupriya Tripathi13, Peter J. Turnbaugh9, Sabah Ul-Hasan40, Justin J. J. van der Hooft41, Fernando Vargas18, Yoshiki Vázquez-Baeza18, Emily Vogtmann, Max von Hippel42, William A. Walters28, Yunhu Wan, Mingxun Wang13, Jonathan Warren43, Kyle C. Weber35, Kyle C. Weber44, Chase Hd Williamson1, Amy D. Willis30, Zhenjiang Zech Xu18, Jesse R. Zaneveld30, Yilong Zhang45, Rob Knight18, J. Gregory Caporaso1 
24 Oct 2018-PeerJ
TL;DR: QIIME 2 provides new features that will drive the next generation of microbiome research, including interactive spatial and temporal analysis and visualization tools, support for metabolomics and shotgun metagenomics analysis, and automated data provenance tracking to ensure reproducible, transparent microbiome data science.
Abstract: We present QIIME 2, an open-source microbiome data science platform accessible to users spanning the microbiome research ecosystem, from scientists and engineers to clinicians and policy makers. QIIME 2 provides new features that will drive the next generation of microbiome research. These include interactive spatial and temporal analysis and visualization tools, support for metabolomics and shotgun metagenomics analysis, and automated data provenance tracking to ensure reproducible, transparent microbiome data science.

875 citations

Journal ArticleDOI
Louis-Félix Nothias1, Louis-Félix Nothias2, Daniel Petras1, Daniel Petras2, Robin Schmid3, Kai Dührkop4, Johannes Rainer5, Abinesh Sarvepalli2, Abinesh Sarvepalli1, Ivan Protsyuk, Madeleine Ernst6, Madeleine Ernst2, Madeleine Ernst1, Hiroshi Tsugawa, Markus Fleischauer4, Fabian Aicheler7, Alexander A. Aksenov2, Alexander A. Aksenov1, Oliver Alka7, Pierre-Marie Allard8, Aiko Barsch9, Xavier Cachet10, Andrés Mauricio Caraballo-Rodríguez1, Andrés Mauricio Caraballo-Rodríguez2, Ricardo Silva2, Ricardo Silva11, Tam Dang12, Tam Dang2, Neha Garg13, Julia M. Gauglitz1, Julia M. Gauglitz2, Alexey Gurevich14, Giorgis Isaac15, Alan K. Jarmusch1, Alan K. Jarmusch2, Zdeněk Kameník16, Kyo Bin Kang1, Kyo Bin Kang17, Kyo Bin Kang2, Nikolas Kessler9, Irina Koester2, Irina Koester1, Ansgar Korf3, Audrey Le Gouellec18, Marcus Ludwig4, Christian Martin H, Laura-Isobel McCall19, Jonathan McSayles, Sven W. Meyer9, Hosein Mohimani20, Mustafa Morsy21, Oriane Moyne18, Oriane Moyne2, Steffen Neumann22, Heiko Neuweger9, Ngoc Hung Nguyen1, Ngoc Hung Nguyen2, Mélissa Nothias-Esposito2, Mélissa Nothias-Esposito1, Julien Paolini23, Vanessa V. Phelan1, Tomáš Pluskal24, Robert A. Quinn25, Simon Rogers26, Bindesh Shrestha15, Anupriya Tripathi1, Anupriya Tripathi2, Justin J. J. van der Hooft1, Justin J. J. van der Hooft2, Justin J. J. van der Hooft27, Fernando Vargas1, Fernando Vargas2, Kelly C. Weldon2, Kelly C. Weldon1, Michael Witting, Heejung Yang28, Zheng Zhang1, Zheng Zhang2, Florian Zubeil9, Oliver Kohlbacher, Sebastian Böcker4, Theodore Alexandrov1, Theodore Alexandrov2, Nuno Bandeira1, Nuno Bandeira2, Mingxun Wang2, Mingxun Wang1, Pieter C. Dorrestein 
TL;DR: Feature-based molecular networking (FBMN) as discussed by the authors is an analysis method in the Global Natural Products Social Molecular Networking (GNPS) infrastructure that builds on chromatographic feature detection and alignment tools.
Abstract: Molecular networking has become a key method to visualize and annotate the chemical space in non-targeted mass spectrometry data. We present feature-based molecular networking (FBMN) as an analysis method in the Global Natural Products Social Molecular Networking (GNPS) infrastructure that builds on chromatographic feature detection and alignment tools. FBMN enables quantitative analysis and resolution of isomers, including from ion mobility spectrometry.

497 citations

Journal ArticleDOI
Evan Bolyen1, Jai Ram Rideout1, Matthew R. Dillon1, Nicholas A. Bokulich1, Christian C. Abnet2, Gabriel A. Al-Ghalith3, Harriet Alexander4, Harriet Alexander5, Eric J. Alm6, Manimozhiyan Arumugam7, Francesco Asnicar8, Yang Bai9, Jordan E. Bisanz10, Kyle Bittinger11, Asker Daniel Brejnrod7, Colin J. Brislawn12, C. Titus Brown4, Benjamin J. Callahan13, Andrés Mauricio Caraballo-Rodríguez14, John Chase1, Emily K. Cope1, Ricardo Silva14, Christian Diener15, Pieter C. Dorrestein14, Gavin M. Douglas16, Daniel M. Durall17, Claire Duvallet6, Christian F. Edwardson, Madeleine Ernst14, Madeleine Ernst18, Mehrbod Estaki17, Jennifer Fouquier19, Julia M. Gauglitz14, Sean M. Gibbons15, Sean M. Gibbons20, Deanna L. Gibson17, Antonio Gonzalez21, Kestrel Gorlick1, Jiarong Guo22, Benjamin Hillmann3, Susan Holmes23, Hannes Holste21, Curtis Huttenhower24, Curtis Huttenhower25, Gavin A. Huttley26, Stefan Janssen27, Alan K. Jarmusch14, Lingjing Jiang21, Benjamin D. Kaehler26, Benjamin D. Kaehler28, Kyo Bin Kang29, Kyo Bin Kang14, Christopher R. Keefe1, Paul Keim1, Scott T. Kelley30, Dan Knights3, Irina Koester14, Irina Koester21, Tomasz Kosciolek21, Jorden Kreps1, Morgan G. I. Langille16, Joslynn S. Lee31, Ruth E. Ley32, Ruth E. Ley33, Yong-Xin Liu, Erikka Loftfield2, Catherine A. Lozupone19, Massoud Maher21, Clarisse Marotz21, Bryan D Martin20, Daniel McDonald21, Lauren J. McIver25, Lauren J. McIver24, Alexey V. Melnik14, Jessica L. Metcalf34, Sydney C. Morgan17, Jamie Morton21, Ahmad Turan Naimey1, Jose A. Navas-Molina21, Jose A. Navas-Molina35, Louis-Félix Nothias14, Stephanie B. Orchanian, Talima Pearson1, Samuel L. Peoples36, Samuel L. Peoples20, Daniel Petras14, Mary L. Preuss37, Elmar Pruesse19, Lasse Buur Rasmussen7, Adam R. Rivers38, Michael S. Robeson39, Patrick Rosenthal37, Nicola Segata8, Michael Shaffer19, Arron Shiffer1, Rashmi Sinha2, Se Jin Song21, John R. Spear40, Austin D. Swafford, Luke R. Thompson41, Luke R. Thompson42, Pedro J. Torres30, Pauline Trinh20, Anupriya Tripathi21, Anupriya Tripathi14, Peter J. Turnbaugh10, Sabah Ul-Hasan43, Justin J. J. van der Hooft44, Fernando Vargas, Yoshiki Vázquez-Baeza21, Emily Vogtmann2, Max von Hippel45, William A. Walters33, Yunhu Wan2, Mingxun Wang14, Jonathan Warren46, Kyle C. Weber38, Kyle C. Weber47, Charles H. D. Williamson1, Amy D. Willis20, Zhenjiang Zech Xu21, Jesse R. Zaneveld20, Yilong Zhang48, Qiyun Zhu21, Rob Knight21, J. Gregory Caporaso1 
TL;DR: An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Abstract: In the version of this article initially published, some reference citations were incorrect. The three references to Jupyter Notebooks should have cited Kluyver et al. instead of Gonzalez et al. The reference to Qiita should have cited Gonzalez et al. instead of Schloss et al. The reference to mothur should have cited Schloss et al. instead of McMurdie & Holmes. The reference to phyloseq should have cited McMurdie & Holmes instead of Huber et al. The reference to Bioconductor should have cited Huber et al. instead of Franzosa et al. And the reference to the biobakery suite should have cited Franzosa et al. instead of Kluyver et al. The errors have been corrected in the HTML and PDF versions of the article.

301 citations

Journal ArticleDOI
TL;DR: This protocol describes how to use GNPS to explore uploaded metabolomics data, and provides step-by-step instructions for creating reproducible, high-quality molecular networks.
Abstract: Global Natural Product Social Molecular Networking (GNPS) is an interactive online small molecule-focused tandem mass spectrometry (MS2) data curation and analysis infrastructure. It is intended to provide as much chemical insight as possible into an untargeted MS2 dataset and to connect this chemical insight to the user's underlying biological questions. This can be performed within one liquid chromatography (LC)-MS2 experiment or at the repository scale. GNPS-MassIVE is a public data repository for untargeted MS2 data with sample information (metadata) and annotated MS2 spectra. These publicly accessible data can be annotated and updated with the GNPS infrastructure keeping a continuous record of all changes. This knowledge is disseminated across all public data; it is a living dataset. Molecular networking-one of the main analysis tools used within the GNPS platform-creates a structured data table that reflects the molecular diversity captured in tandem mass spectrometry experiments by computing the relationships of the MS2 spectra as spectral similarity. This protocol provides step-by-step instructions for creating reproducible, high-quality molecular networks. For training purposes, the reader is led through a 90- to 120-min procedure that starts by recalling an example public dataset and its sample information and proceeds to creating and interpreting a molecular network. Each data analysis job can be shared or cloned to disseminate the knowledge gained, thus propagating information that can lead to the discovery of molecules, metabolic pathways, and ecosystem/community interactions.

274 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Some notable features of IQ-TREE version 2 are described and the key advantages over other software are highlighted.
Abstract: IQ-TREE (http://www.iqtree.org, last accessed February 6, 2020) is a user-friendly and widely used software package for phylogenetic inference using maximum likelihood. Since the release of version 1 in 2014, we have continuously expanded IQ-TREE to integrate a plethora of new models of sequence evolution and efficient computational approaches of phylogenetic inference to deal with genomic data. Here, we describe notable features of IQ-TREE version 2 and highlight the key advantages over other software.

4,337 citations

25 Apr 2017
TL;DR: This presentation is a case study taken from the travel and holiday industry and describes the effectiveness of various techniques as well as the performance of Python-based libraries such as Python Data Analysis Library (Pandas), and Scikit-learn (built on NumPy, SciPy and matplotlib).
Abstract: This presentation is a case study taken from the travel and holiday industry. Paxport/Multicom, based in UK and Sweden, have recently adopted a recommendation system for holiday accommodation bookings. Machine learning techniques such as Collaborative Filtering have been applied using Python (3.5.1), with Jupyter (4.0.6) as the main framework. Data scale and sparsity present significant challenges in the case study, and so the effectiveness of various techniques are described as well as the performance of Python-based libraries such as Python Data Analysis Library (Pandas), and Scikit-learn (built on NumPy, SciPy and matplotlib). The presentation is suitable for all levels of programmers.

1,338 citations

01 Dec 2007

1,121 citations

Journal ArticleDOI
TL;DR: Using metabolomics and shotgun metagenomics on stool samples from individuals with and without inflammatory bowel disease, metabolites, microbial species and genes associated with disease were identified and validated in an independent cohort, providing an improved understanding of perturbations of the microbiome–metabolome interface in IBD.
Abstract: The inflammatory bowel diseases (IBDs), which include Crohn's disease (CD) and ulcerative colitis (UC), are multifactorial chronic conditions of the gastrointestinal tract. While IBD has been associated with dramatic changes in the gut microbiota, changes in the gut metabolome-the molecular interface between host and microbiota-are less well understood. To address this gap, we performed untargeted metabolomic and shotgun metagenomic profiling of cross-sectional stool samples from discovery (n = 155) and validation (n = 65) cohorts of CD, UC and non-IBD control patients. Metabolomic and metagenomic profiles were broadly correlated with faecal calprotectin levels (a measure of gut inflammation). Across >8,000 measured metabolite features, we identified chemicals and chemical classes that were differentially abundant in IBD, including enrichments for sphingolipids and bile acids, and depletions for triacylglycerols and tetrapyrroles. While > 50% of differentially abundant metabolite features were uncharacterized, many could be assigned putative roles through metabolomic 'guilt by association' (covariation with known metabolites). Differentially abundant species and functions from the metagenomic profiles reflected adaptation to oxidative stress in the IBD gut, and were individually consistent with previous findings. Integrating these data, however, we identified 122 robust associations between differentially abundant species and well-characterized differentially abundant metabolites, indicating possible mechanistic relationships that are perturbed in IBD. Finally, we found that metabolome- and metagenome-based classifiers of IBD status were highly accurate and, like the vast majority of individual trends, generalized well to the independent validation cohort. Our findings thus provide an improved understanding of perturbations of the microbiome-metabolome interface in IBD, including identification of many potential diagnostic and therapeutic targets.

917 citations