scispace - formally typeset
Search or ask a question
Author

Alan M. Levine

Bio: Alan M. Levine is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Planet & Exoplanet. The author has an hindex of 41, co-authored 123 publications receiving 9586 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The Transiting Exoplanet Survey Satellite (TESS) as discussed by the authors will search for planets transiting bright and nearby stars using four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars.
Abstract: The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its 2-year mission, TESS will employ four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars with I C ≈4−13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from 1 month to 1 year, depending mainly on the star’s ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10 to 100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every 4 months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.

2,604 citations

Journal ArticleDOI
TL;DR: The Transiting Exoplanet Survey Satellite (TESS) as mentioned in this paper was selected by NASA for launch in 2017 as an Astrophysics Explorer mission to search for planets transiting bright and nearby stars.
Abstract: The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its two-year mission, TESS will employ four wide-field optical CCD cameras to monitor at least 200,000 main-sequence dwarf stars with I = 4-13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from one month to one year, depending mainly on the star's ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10-100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every four months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.

1,728 citations

Proceedings ArticleDOI
TL;DR: The Transiting Exoplanet Survey Satellite (TESS) as mentioned in this paper will discover thousands of exoplanets in orbit around the brightest stars in the sky, including Earth-sized to gas giants, around a wide range of stellar types and orbital distances.
Abstract: The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest stars in the sky. In a two-year survey, TESS will monitor more than 500,000 stars for temporary drops in brightness caused by planetary transits. This first-ever spaceborne all-sky transit survey will identify planets ranging from Earth-sized to gas giants, around a wide range of stellar types and orbital distances. No ground-based survey can achieve this feat. A large fraction of TESS target stars will be 30-100 times brighter than those observed by Kepler satellite, and therefore TESS . planets will be far easier to characterize with follow-up observations. TESS will make it possible to study the masses, sizes, densities, orbits, and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars. TESS will provide prime targets for observation with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future. TESS data will be released with minimal delay (no proprietary period), inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the very nearest and brightest main-sequence stars hosting transiting exoplanets, thus providing future observers with the most favorable targets for detailed investigations.

865 citations

Journal ArticleDOI
TL;DR: The Rossi X-Ray Timing Explorer has been monitoring the sky in the 1.5-12 keV band since late February as discussed by the authors, with three coded-aperture cameras rotating to view different regions by a motorized drive assembly.
Abstract: The all-sky monitor on the Rossi X-Ray Timing Explorer has been monitoring the sky in the 1.5-12 keV band since late February. The instrument consists of three coded-aperture cameras that can be rotated to view different regions by a motorized drive assembly. Intensities of ~100 known sources are obtained via least-squares fits of shadow patterns to the data and compiled to form X-ray light curves. Six orbital periodicities and four long-term periodicities, all previously known, have been detected in these light curves. Searches for additional sources have also been conducted. X-ray light curves for the Crab Nebula, Cyg X-1, 4U 1705-44, GRO J1655-40, and SMC X-1 are reported. They illustrate the quality of the results and the range of observed phenomena.

695 citations

Journal ArticleDOI
TL;DR: A robust power spectrum estimation framework that preserves the so-called EoR window and keeps track of estimator errors and covariances is developed.
Abstract: We present techniques for bridging the gap between idealized inverse covariance weighted quadratic estimation of 21 cm power spectra and the real-world challenges presented universally by interferometric observation. By carefully evaluating various estimators and adapting our techniques for large but incomplete data sets, we develop a robust power spectrum estimation framework that preserves the so-called \EoR window" and keeps track of estimator errors and covariances. We apply our method to observations from the 32-tile prototype of the Murchinson Wideeld Array to demonstrate the importance of a judicious analysis technique. Lastly, we apply our method to investigate the dependence of the clean EoR window on frequency|especially the frequency dependence of the so-called \wedge" feature|and establish upper limits on the power spectrum from z = 6:2 to z = 11:7. Our lowest limit is

209 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
20 Aug 2004
TL;DR: The Swift mission as discussed by the authors is a multi-wavelength observatory for gamma-ray burst (GRB) astronomy, which is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions.
Abstract: The Swift mission, scheduled for launch in 2004, is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts yr � 1 and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to (1) determine the origin of GRBs, (2) classify GRBs and search for new types, (3) study the interaction of the ultrarelativistic outflows of GRBs with their surrounding medium, and (4) use GRBs to study the early universe out to z >10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a newgeneration wide-field gamma-ray (15‐150 keV) detector that will detect bursts, calculate 1 0 ‐4 0 positions, and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5 00 positions and perform spectroscopy in the 0.2‐10 keV band; and a narrow-field UV/optical telescope that will operate in the 170‐ 600 nm band and provide 0B3 positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of � 1m crab (� 2;10 � 11 ergs cm � 2 s � 1 in the 15‐150 keV band), more than an order of magnitude better than HEAO 1 A-4. A flexible data and operations system will allow rapid follow-up observations of all types of

3,753 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the properties and behavior of 20 X-ray binaries that contain a dynamically confirmed black hole, 17 of which are transient systems, during the past decade, many of these transien...
Abstract: We review the properties and behavior of 20 X-ray binaries that contain a dynamically-confirmed black hole, 17 of which are transient systems. During the past decade, many of these transien...

2,174 citations

Journal ArticleDOI
TL;DR: The burst alert telescope (BAT) as discussed by the authors is one of three instruments on the Swift MIDEX spacecraft to study gamma-ray bursts (GRBs) and it detects the GRB and localizes the burst direction to an accuracy of 1-4 arcmin within 20 s after the start of the event.
Abstract: he burst alert telescope (BAT) is one of three instruments on the Swift MIDEX spacecraft to study gamma-ray bursts (GRBs). The BAT first detects the GRB and localizes the burst direction to an accuracy of 1–4 arcmin within 20 s after the start of the event. The GRB trigger initiates an autonomous spacecraft slew to point the two narrow field-of-view (FOV) instruments at the burst location within 20–70 s so to make follow-up X-ray and optical observations. The BAT is a wide-FOV, coded-aperture instrument with a CdZnTe detector plane. The detector plane is composed of 32,768 pieces of CdZnTe (4×4×2 mm), and the coded-aperture mask is composed of ∼52,000 pieces of lead (5×5×1 mm) with a 1-m separation between mask and detector plane. The BAT operates over the 15–150 keV energy range with ∼7 keV resolution, a sensitivity of ∼10−8 erg s−1 cm−2, and a 1.4 sr (half-coded) FOV. We expect to detect > 100 GRBs/year for a 2-year mission. The BAT also performs an all-sky hard X-ray survey with a sensitivity of ∼2 m Crab (systematic limit) and it serves as a hard X-ray transient monitor.

1,285 citations

Journal ArticleDOI
TL;DR: The existence of axions over a vast mass range from 10-33eV to 10-10eV was investigated in this article, where it was shown that axions in the mass range between 10-28eV and 10-18eV give rise to multiple steps in the matter power spectrum, that will be probed by upcoming galaxy surveys.
Abstract: String theory suggests the simultaneous presence of many ultralight axions possibly populating each decade of mass down to the Hubble scale 10^-33eV Conversely the presence of such a plenitude of axions (an "axiverse") would be evidence for string theory, since it arises due to the topological complexity of the extra-dimensional manifold and is ad hoc in a theory with just the four familiar dimensions We investigate how upcoming astrophysical experiments will explore the existence of such axions over a vast mass range from 10^-33eV to 10^-10eV Axions with masses between 10^-33eV to 10^-28eV cause a rotation of the CMB polarization that is constant throughout the sky The predicted rotation angle is of order \alpha~1/137 Axions in the mass range 10^-28eV to 10^-18eV give rise to multiple steps in the matter power spectrum, that will be probed by upcoming galaxy surveys Axions in the mass range 10^-22eV to 10^-10eV affect the dynamics and gravitational wave emission of rapidly rotating astrophysical black holes through the Penrose superradiance process When the axion Compton wavelength is of order of the black hole size, the axions develop "superradiant" atomic bound states around the black hole "nucleus" Their occupation number grows exponentially by extracting rotational energy from the ergosphere, culminating in a rotating Bose-Einstein axion condensate emitting gravitational waves This mechanism creates mass gaps in the spectrum of rapidly rotating black holes that diagnose the presence of axions The rapidly rotating black hole in the X-ray binary LMC X-1 implies an upper limit on the decay constant of the QCD axion f_a<2*10^17GeV, much below the Planck mass This reach can be improved down to the grand unification scale f_a<2*10^16GeV, by observing smaller stellar mass black holes

1,279 citations