scispace - formally typeset
Search or ask a question
Author

Alan R. Katritzky

Bio: Alan R. Katritzky is an academic researcher from University of Florida. The author has contributed to research in topics: Heteroatom & Ring (chemistry). The author has an hindex of 14, co-authored 42 publications receiving 11759 citations.

Papers
More filters
Book
30 Sep 1997
TL;DR: In this article, the CHEC III is organized in 15 volumes and closely follows the organization used in the previous edition: Volumes 1 and 2: Cover respectively three and four-membered heterocycles, together with all fused systems containing a three- or four-measured heterocyclic ring.
Abstract: CHEC III is organized in 15 Volumes and closely follows the organization used in the previous edition: Volumes 1 and 2: Cover respectively three- and four-membered heterocycles, together with all fused systems containing a three- or four-membered heterocyclic ring. Volume 3: Five-membered rings with one heteroatom together with their benzo- and other carbocyclic-fused derivatives. Volumes 4, 5 and 6: Cover five-membered rings with two heteroatoms, and three or more heteroatoms, respectively, each with their fused carbocyclic compounds. Volumes 7, 8 and 9: Dedicated to six-membered rings with one, two, and more than two heteroatoms, respectively, again with the corresponding fused carbocylic compounds. Volumes 10, 11 and 12: Cover systems containing at least two directly fused heterocyclic five- and/or six-membered rings: of these Volume 10 deals with bi-heterocyclic rings without a ring junction heteroatom, and Volume 11 deals with 5:5 and 5:6 fused rings systems with at least one ring junction nitrogen, while Volume 12 is devoted to all other systems of five and/or six-membered fused or spiro heterocyclic rings with ring junction heteroatoms. Volumes 13 and 14: Seven-membered and larger heterocyclic rings including all their fused derivatives (except those containing three- or four-membered heterocyclic rings which are included in Volume 1 and 2, respectively). Volume 15: Author, ring and subject indexes.

8,174 citations

Book
01 Jan 2005
TL;DR: In this article, the synthesis of carbon with no attached heteroatoms was studied, as well as carbon with two attached heteroams with at least one carbon-to-heteroatom multiple link.
Abstract: Volume 1 - synthesis - carbon with no attached heteroatoms volume 2 - synthesis - carbon with one heteroatom attached by a single bond volume 3 - synthesis - carbon with one heteroatom attached by a multiple bond volume 4 - synthesis - carbon with two heteroatoms, each attached by a single bond volume 5 - synthesis - carbon with two attached heteroam with at least one carbon-to-heteroatom multiple link volume 6 - synthesis - carbon with three or four attached heteroatoms volume 7 - indices.

1,078 citations

Book
01 Jan 1985
TL;DR: The Handbook of Heterocyclic Chemistry as discussed by the authors has been updated with over 50% new content, including a new expanded author team, who have carefully distilled essential information on the reactivity, structure and synthesis of heterocycles.
Abstract: Heterocyclic compounds play a vital role in the metabolism of living cells. Their practical applications range from extensive clinical use to fields as diverse as agriculture, photography, biocide formulation and polymer science. Written by leading scholars and industry experts, the Handbook of Heterocyclic Chemistry is thoroughly updated with over 50% new content. It has been rewritten with a new expanded author team, who have carefully distilled essential information on the reactivity, structure and synthesis of heterocycles from the 2008 major reference work Comprehensive Heterocyclic Chemistry III. To bring the work up to date the author team have also added new synthetic examples and structures, key applications and new references from 2008-2010. Contains more than 1500 clearly drawn structures and reactions. The highly systematic coverage given to the subject makes this one of the most authoritative single-volume accounts of modern heterocyclic chemistry available and should be useful reference for those teaching a heterocyclic course. -Covers the structure, reactivity and synthesis of all heterocyclic compounds as distilled from the larger 15-volume reference work -Saves researchers time when they require important information on heterocycles--speeding them to thousands of clearly drawn chemical structures and pertinent reviews by leading experts -Features 35% new material to compliment the completely revised text

727 citations

Book
01 Jan 1963

467 citations

Book
01 Jan 1997
TL;DR: The comprehensive Heterocyclic Chemistry was published in 1984 and is now available on CD-ROM as discussed by the authors. But it is not available on the Internet yet, as it was not available before 1984.
Abstract: "Comprehensive Heterocyclic Chemistry" was published in 1984 and is now available on CD-ROM.

332 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the linear quadridentate N2S2 donor ligand 1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane (bmdhp) forms mono-and di-hydrate 1 : 1 copper(II) complexes which are significantly more stable toward autoreduction than those of the non-methylated analogue.
Abstract: The linear quadridentate N2S2 donor ligand 1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane (bmdhp) forms mono- and di-hydrate 1 : 1 copper(II) complexes which are significantly more stable toward autoreduction than those of the non-methylated analogue. The deep green monohydrate of the perchlorate salt crystallises as the mononuclear aqua-complex, [Cu(bmdhp)(OH2)][ClO4]2, in the monoclinic space group P21/n, with Z= 4, a= 18.459(3), b= 10.362(2), c= 16.365(3)A, and β= 117.14(1)°. The structure was solved and refined by standard Patterson, Fourier, and least-squares techniques to R= 0.047 and R′= 0.075 for 3 343 independent reflections with l > 2σ(l). The compound consists of [Cu(bmdhp)(OH2)]2+ ions and ClO4– counter ions. The co-ordination around copper is intermediate between trigonal bipyramidal and square pyramidal, with Cu–N distances of 1.950(4) and 1.997(4)A, Cu–O(water) 2.225(4)A, and Cu–S 2.328(1) and 2.337(1)A. In the solid state, the perchlorate dihydrate's co-ordination sphere may be a topoisomer of the monohydrate's. A new angular structural parameter, τ, is defined and proposed as an index of trigonality, as a general descriptor of five-co-ordinate centric molecules. By this criterion, the irregular co-ordination geometry of [Cu(bmdhp)(OH2)]2+ in the solid state is described as being 48% along the pathway of distortion from square pyramidal toward trigonal bipyramidal. In the electronic spectrum of the complex, assignment is made of the S(thioether)→ Cu charge-transfer bands by comparison with those of the colourless complex Zn(bmdhp)(OH)(ClO4). E.s.r. and ligand-field spectra show that the copper(II) compounds adopt a tetragonal structure in donor solvents.

7,886 citations

Journal ArticleDOI
TL;DR: In this Review, the fundamental characteristics of azide chemistry and current developments are presented and the focus will be placed on cycloadditions (Huisgen reaction), aza ylide chemistry, and the synthesis of heterocycles.
Abstract: Since the discovery of organic azides by Peter Griess more than 140 years ago, numerous syntheses of these energy-rich molecules have been developed. In more recent times in particular, completely new perspectives have been developed for their use in peptide chemistry, combinatorial chemistry, and heterocyclic synthesis. Organic azides have assumed an important position at the interface between chemistry, biology, medicine, and materials science. In this Review, the fundamental characteristics of azide chemistry and current developments are presented. The focus will be placed on cycloadditions (Huisgen reaction), aza ylide chemistry, and the synthesis of heterocycles. Further reactions such as the aza-Wittig reaction, the Sundberg rearrangement, the Staudinger ligation, the Boyer and Boyer-Aube rearrangements, the Curtius rearrangement, the Schmidt rearrangement, and the Hemetsberger rearrangement bear witness to the versatility of modern azide chemistry.

1,766 citations

Journal ArticleDOI
TL;DR: P palladium-catalyzed synthesis can provide access to fine chemicals, agrochemical and pharmaceutical intermediates, and active ingredients in fewer steps and with less waste than classical.
Abstract: The substituted indole nucleus [indole is the acronym from indigo (the natural dye) and oleum (used for the isolation)] is a structural component of a vast number of biologically active natural and unnatural compounds. The synthesis and functionalization of indoles has been the object of research for over 100 years, and a variety of well-established classical methods are now available, to name a few of them, the Fisher indole synthesis, the Gassman synthesis of indoles from N-halo-anilines, the Madelung cyclization of N-acyl-o-toluidines, the Bischler indole synthesis, the Batcho-Leimgruber synthesis of indoles from o-nitrotoluenes and dimethylformamide acetals, and the reductive cyclization of o-nitrobenzyl ketones.1 In the last 40 years or so, however, palladiumcatalyzed reactions, generally tolerant of a wide range of functionalities and therefore applicable to complex molecules, have achieved an important place in the arsenal of the practicing organic chemist. Since the invention of an industrial process for the palladium-catalyzed production of acetaldehyde from ethylene in the presence of PdCl2 and CuCl2, an everincreasing number of organic transformations have been based on palladium catalysis. Almost every area of the organic synthesis has been deeply influenced by the profound potential of this versatile transition metal, modifying the way organic chemists design and realize synthetic processes.2,3 Because of its catalytic nature, palladium-catalyzed synthesis can provide access to fine chemicals, agrochemical and pharmaceutical intermediates, and active ingredients in fewer steps and with less waste than classical † In memory of Prof. Bianca Rosa Pietroni, a colleague and very close friend. * To whom correspondence should be addressed. Phone: + 39 (06) 4991-2785. Fax: + 30 (06) 4991-2780. E-mail: sandro.cacchi@ uniroma1.it. 2873 Chem. Rev. 2005, 105, 2873−2920

1,531 citations

Journal ArticleDOI
TL;DR: Examples of total syntheses in which metathesis reactions of olefins, enynes, and alkynes played a crucial role and which imparted to these endeavors certain elements of novelty, elegance, and efficiency are highlighted.
Abstract: With the exception of palladium-catalyzed cross-couplings, no other group of reactions has had such a profound impact on the formation of carbon-carbon bonds and the art of total synthesis in the last quarter of a century than the metathesis reactions of olefins, enynes, and alkynes. Herein, we highlight a number of selected examples of total syntheses in which such processes played a crucial role and which imparted to these endeavors certain elements of novelty, elegance, and efficiency. Judging from their short but impressive history, the influence of these reactions in chemical synthesis is destined to increase.

1,025 citations