scispace - formally typeset
Search or ask a question
Author

Alan T. Bankier

Other affiliations: Medical Research Council
Bio: Alan T. Bankier is an academic researcher from Laboratory of Molecular Biology. The author has contributed to research in topics: Gene & Genome. The author has an hindex of 34, co-authored 57 publications receiving 18252 citations. Previous affiliations of Alan T. Bankier include Medical Research Council.


Papers
More filters
Journal ArticleDOI
09 Apr 1981
TL;DR: The complete sequence of the 16,569-base pair human mitochondrial genome is presented and shows extreme economy in that the genes have none or only a few noncoding bases between them, and in many cases the termination codons are not coded in the DNA but are created post-transcriptionally by polyadenylation of the mRNAs.
Abstract: The complete sequence of the 16,569-base pair human mitochondrial genome is presented. The genes for the 12S and 16S rRNAs, 22 tRNAs, cytochrome c oxidase subunits I, II and III, ATPase subunit 6, cytochrome b and eight other predicted protein coding genes have been located. The sequence shows extreme economy in that the genes have none or only a few noncoding bases between them, and in many cases the termination codons are not coded in the DNA but are created post-transcriptionally by polyadenylation of the mRNAs.

8,783 citations

Journal ArticleDOI
19 Jul 1984-Nature
TL;DR: The complete (172,282 base pairs) nucleotide sequence of the B95-8 strain of Epstein–Barr virus has been established using the dideoxynucleotide/M13 sequencing procedure.
Abstract: The complete (172,282 base pairs) nucleotide sequence of the B95-8 strain of Epstein-Barr virus has been established using the dideoxynucleotide/M13 sequencing procedure. Many RNA polymerase II promoters have been mapped and the mRNAs from these promoters have been assigned to the latent or early/late productive virus cycles. Likely protein-coding regions have been identified and three of these have been shown to encode a ribonucleotide reductase, a DNA polymerase and two surface glycoproteins.

2,016 citations

Book ChapterDOI
TL;DR: This chapter is being written in March 1989 when the sequence is complete except for some remaining polishing of certain areas which is still going on (manuscript in preparation).
Abstract: Large-scale sequence analysis of the AD169 strain of human cytomegalovirus (HCMV) began in this laboratory in 1984 when very little was known about the sequence or location of genetic information in the viral genome. At that time sequence analysis was confined to the major immediate-early gene (Stenberg et al. 1984), a region of the Colburn strain that contained CA tracts (Jeang and Hayward 1983), the L-S junction region (Tamashiro et al. 1984), and what has been termed the transforming region (Kouzarides et al. 1983). This chapter is being written in March 1989 when the sequence is complete except for some remaining polishing of certain areas which is still going on (manuscript in preparation). As far as we know there are no major discrepancies in the data which might lead to the sequence changing although of course this cannot be ruled out. We present a preliminary analysis of the HCMV genome and limit ourselves mainly to the potential protein-coding content of over 200 reading frames.

1,338 citations

Journal ArticleDOI
Ludwig Eichinger1, Justin A. Pachebat2, Justin A. Pachebat1, Gernot Glöckner, Marie-Adèle Rajandream3, Richard Sucgang4, Matthew Berriman3, J. Song4, Rolf Olsen5, Karol Szafranski, Qikai Xu4, Budi Tunggal1, Sarah K. Kummerfeld2, Martin Madera2, Bernard Anri Konfortov2, Francisco Rivero1, Alan T. Bankier2, Rüdiger Lehmann, N. Hamlin3, Robert L. Davies3, Pascale Gaudet6, Petra Fey6, Karen E Pilcher6, Guokai Chen4, David L. Saunders3, Erica Sodergren4, P. Davis3, Arnaud Kerhornou3, X. Nie4, Neil Hall3, Christophe Anjard5, Lisa Hemphill4, Nathalie Bason3, Patrick Farbrother1, Brian A. Desany4, Eric M. Just6, Takahiro Morio7, René Rost8, Carol Churcher3, J. Cooper3, Stephen F. Haydock9, N. van Driessche4, Ann Cronin3, Ian Goodhead3, Donna M. Muzny4, T. Mourier3, Arnab Pain3, Mingyang Lu4, D. Harper3, R. Lindsay4, Heidi Hauser3, Kylie R. James3, M. Quiles4, M. Madan Babu2, Tsuneyuki Saito10, Carmen Buchrieser11, A. Wardroper2, A. Wardroper12, Marius Felder, M. Thangavelu, D. Johnson3, Andrew J Knights3, H. Loulseged4, Karen Mungall3, Karen Oliver3, Claire Price3, Michael A. Quail3, Hideko Urushihara7, Judith Hernandez4, Ester Rabbinowitsch3, David Steffen4, Mandy Sanders3, Jun Ma4, Yuji Kohara13, Sarah Sharp3, Mark Simmonds3, S. Spiegler3, Adrian Tivey3, Sumio Sugano14, Brian White3, Danielle Walker3, John Woodward3, Thomas Winckler, Yoshiaki Tanaka7, Gad Shaulsky4, Michael Schleicher8, George M. Weinstock4, André Rosenthal, Edward C. Cox15, Rex L. Chisholm6, Richard A. Gibbs4, William F. Loomis5, Matthias Platzer, Robert R. Kay2, Jeffrey G. Williams16, Paul H. Dear2, Angelika A. Noegel1, Bart Barrell3, Adam Kuspa4 
05 May 2005-Nature
TL;DR: A proteome-based phylogeny shows that the amoebozoa diverged from the animal–fungal lineage after the plant–animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.
Abstract: The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes of this organism encode approximately 12,500 predicted proteins, a high proportion of which have long, repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal ribosomal DNA (rDNA) element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal-fungal lineage after the plant-animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.

1,289 citations

Journal ArticleDOI
16 Apr 2004-Science
TL;DR: Genome analysis identifies extremely streamlined metabolic pathways and a reliance on the host for nutrients in the parasite, which lacks an apicoplast and its genome, and possesses a degenerate mitochondrion that has lost its genome.
Abstract: The apicomplexan Cryptosporidium parvum is an intestinal parasite that affects healthy humans and animals, and causes an unrelenting infection in immunocompromised individuals such as AIDS patients. We report the complete genome sequence of C. parvum, type II isolate. Genome analysis identifies extremely streamlined metabolic pathways and a reliance on the host for nutrients. In contrast to Plasmodium and Toxoplasma, the parasite lacks an apicoplast and its genome, and possesses a degenerate mitochondrion that has lost its genome. Several novel classes of cell-surface and secreted proteins with a potential role in host interactions and pathogenesis were also detected. Elucidation of the core metabolism, including enzymes with high similarities to bacterial and plant counterparts, opens new avenues for drug development.

892 citations


Cited by
More filters
Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

Journal ArticleDOI
TL;DR: A computer program that progressively evaluates the hydrophilicity and hydrophobicity of a protein along its amino acid sequence has been devised and its simplicity and its graphic nature make it a very useful tool for the evaluation of protein structures.

21,921 citations

Journal Article
TL;DR: "universal"
Abstract: We describe "universal" DNA primers for polymerase chain reaction (PCR) amplification of a 710-bp fragment of the mitochondrial cytochrome c oxidase subunit I gene (COI) from 11 invertebrate phyla: Echinodermata, Mollusca, Annelida, Pogonophora, Arthropoda, Nemertinea, Echiura, Sipuncula, Platyhelminthes, Tardigrada, and Coelenterata, as well as the putative phylum Vestimentifera. Preliminary comparisons revealed that these COI primers generate informative sequences for phylogenetic analyses at the species and higher taxonomic levels.

13,641 citations

Journal ArticleDOI
09 Apr 1981
TL;DR: The complete sequence of the 16,569-base pair human mitochondrial genome is presented and shows extreme economy in that the genes have none or only a few noncoding bases between them, and in many cases the termination codons are not coded in the DNA but are created post-transcriptionally by polyadenylation of the mRNAs.
Abstract: The complete sequence of the 16,569-base pair human mitochondrial genome is presented. The genes for the 12S and 16S rRNAs, 22 tRNAs, cytochrome c oxidase subunits I, II and III, ATPase subunit 6, cytochrome b and eight other predicted protein coding genes have been located. The sequence shows extreme economy in that the genes have none or only a few noncoding bases between them, and in many cases the termination codons are not coded in the DNA but are created post-transcriptionally by polyadenylation of the mRNAs.

8,783 citations