scispace - formally typeset
Search or ask a question
Author

Alasdair M. Barr

Bio: Alasdair M. Barr is an academic researcher from University of British Columbia. The author has contributed to research in topics: Antipsychotic & Clozapine. The author has an hindex of 45, co-authored 211 publications receiving 6915 citations. Previous affiliations of Alasdair M. Barr include UBC Hospital & Scripps Research Institute.


Papers
More filters
Journal Article
TL;DR: This work provides a comprehensive description of the factors relating to MA use and the major health-related consequences, with an emphasis on MA-induced psychosis, and hopes that increased knowledge of MA abuse will provide the basis for future treatment strategies.
Abstract: The psychostimulant methamphetamine (MA) is a highly addictive drug that has surged in popularity over the last decade in North America. A burgeoning number of clandestine drug laboratories has led to dramatic increases in MA production, which have resulted in significant public health, legal and environmental problems. Current evidence indicates that exposure to MA is neurotoxic, and neuroimaging studies confirm that long-term use in humans may lead to extensive neural damage. These physiological changes are commonly associated with persistent forms of cognitive impairment, including deficits in attention, memory and executive function. In the present review, we provide a comprehensive description of the factors relating to MA use and the major health-related consequences, with an emphasis on MA-induced psychosis. It is hoped that increased knowledge of MA abuse will provide the basis for future treatment strategies.

408 citations

Journal ArticleDOI
TL;DR: A review of the evidence that chronic MA use is associated with substantial neurotoxicity and cognitive impairment and key findings in the literature spanning from molecular through to clinical effects are summarized.

352 citations

Journal ArticleDOI
TL;DR: The hypothesis that these pathologic indices of Alzheimer disease, cerebrovascular disease, and Lewy body disease account for the majority of late life cognitive decline is tested.
Abstract: Objective The pathologic indices of Alzheimer disease, cerebrovascular disease, and Lewy body disease accumulate in the brains of older persons with and without dementia, but the extent to which they account for late life cognitive decline remains unknown. We tested the hypothesis that these pathologic indices account for the majority of late life cognitive decline. Methods A total of 856 deceased participants from 2 longitudinal clinical–pathologic studies, Rush Memory and Aging Project and Religious Orders Study, completed a mean of 7.5 annual evaluations, including 17 cognitive tests. Neuropathologic examinations provided quantitative measures of global Alzheimer pathology, amyloid load, tangle density, macroscopic infarcts, microinfarcts, and neocortical Lewy bodies. Random coefficient models were used to examine the linear relation of pathologic indices with global cognitive decline. In subsequent analyses, random change point models were used to examine the relation of the pathologic indices with the onset of terminal decline and rates of preterminal and terminal decline (ie, nonlinear decline). Results Cognition declined a mean of about 0.11U per year (estimate = −0.109, standard error [SE] = 0.004, p < 0.001), with significant individual differences in rates of decline; the variance estimate for the individual slopes was 0.013 (SE = 0.112, p < 0.001). In separate analyses, global Alzheimer pathology, amyloid, tangles, macroscopic infarcts, and neocortical Lewy bodies were associated with faster rates of decline and explained 22%, 6%, 34%, 2%, and 8% of the variation in decline, respectively. When analyzed simultaneously, the pathologic indices accounted for a total of 41% of the variation in decline, and the majority remained unexplained. Furthermore, in random change point models examining the influence of the pathologic indices on the onset of terminal decline and the preterminal and terminal components of the cognitive trajectory, the common pathologic indices accounted for less than a third of the variation in the onset of terminal decline and rates of preterminal and terminal decline. Interpretation The pathologic indices of the common causes of dementia are important determinants of cognitive decline in old age and account for a large proportion of the variation in late life cognitive decline. Surprisingly, however, much of the variation in cognitive decline remains unexplained, suggesting that other important determinants of cognitive decline remain to be identified. Identification of the mechanisms that contribute to the large unexplained proportion of cognitive decline is urgently needed to prevent late life cognitive decline. Ann Neurol 2013;74:478–489

267 citations

Journal ArticleDOI
TL;DR: The results imply that withdrawal from chronic high levels of pregnancy-associated hormones (estradiol and progesterone) can produce depressed symptomology in rodents, which can be prevented by prolonging exposure to high Levels of estradiol through the post-partum period.

259 citations

Journal ArticleDOI
TL;DR: The results suggest that ventral subiculum/CA1 glutamatergic inputs to the nucleus accumbens may presynaptically modulate dopamine efflux by synaptic activation of both ionotropic and metabotropic glutamate receptors in the nucleus Accumbens.
Abstract: The effects of electrical stimulation of the ventral subiculum/CA1 region of the hippocampus on changes in dopamine oxidation current (corresponding to dopamine efflux) in the nucleus accumbens were examined using in vivo chronoamperometry with stearate-graphite paste electrodes in urethane-anaesthetized rats. Burst-patterned monophasic pulses (10-100 Hz/burst delivered at 0.8-4 Hz) evoked a three-component change in dopamine efflux in the nucleus accumbens with an initial transient increase in the dopamine signal above baseline, followed by an immediate decrease below baseline, and thereafter by a prolonged increase in the dopamine signal above baseline. 6-Hydroxydopamine lesions of the mesoaccumbens dopamine pathway or transection of the fimbria-fornix blocked all of the evoked changes in the dopamine signal. Both the first and third components of enhanced dopamine efflux were blocked by microinfusion into the nucleus accumbens of the ionotropic glutamate receptor antagonists (+/-)-2-amino-5-phosphonopentanoic acid, 6,7-dinitroquinoxaline-2,3-dione and kynurenate. Burst stimulation-evoked decreases in the dopamine signal were abolished following microinfusions into the nucleus accumbens of the metabotropic glutamate receptor antagonist (+)-alpha-methyl-4-carboxyphenylglycine. These results suggest that ventral subiculum/CA1 glutamatergic inputs to the nucleus accumbens may presynaptically modulate dopamine efflux by synaptic activation of both ionotropic and metabotropic glutamate receptors in the nucleus accumbens. These glutamate-dopamine interactions may constitute part of the mechanisms by which hippocampal signals are integrated through selective modulation of dopamine release in the nucleus accumbens in both physiological and pathological conditions.

225 citations


Cited by
More filters
01 Jan 2016
TL;DR: The using multivariate statistics is universally compatible with any devices to read, allowing you to get the most less latency time to download any of the authors' books like this one.
Abstract: Thank you for downloading using multivariate statistics. As you may know, people have look hundreds times for their favorite novels like this using multivariate statistics, but end up in infectious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some harmful bugs inside their laptop. using multivariate statistics is available in our digital library an online access to it is set as public so you can download it instantly. Our books collection saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the using multivariate statistics is universally compatible with any devices to read.

14,604 citations

Journal ArticleDOI
TL;DR: The delineation of the neurocircuitry of the evolving stages of the addiction syndrome forms a heuristic basis for the search for the molecular, genetic, and neuropharmacological neuroadaptations that are key to vulnerability for developing and maintaining addiction.

4,160 citations

Journal ArticleDOI
TL;DR: The survival and well-being of all species requires appropriate physiological responses to environmental and homeostatic challenges, so that the respective contributions of the neuroendocrine and autonomic systems are tuned in accordance with stressor modality and intensity.
Abstract: The survival and well-being of all species requires appropriate physiological responses to environmental and homeostatic challenges. The re-establishment and maintenance of homeostasis entails the coordinated activation and control of neuroendocrine and autonomic stress systems. These collective stress responses are mediated by largely overlapping circuits in the limbic forebrain, the hypothalamus and the brainstem, so that the respective contributions of the neuroendocrine and autonomic systems are tuned in accordance with stressor modality and intensity. Limbic regions that are responsible for regulating stress responses intersect with circuits that are responsible for memory and reward, providing a means to tailor the stress response with respect to prior experience and anticipated outcomes.

2,592 citations

Journal ArticleDOI
TL;DR: An integrated model of drug addiction that encompasses intoxication, bingeing, withdrawal, and craving is proposed, and results imply that addiction connotes cortically regulated cognitive and emotional processes, which result in the overvaluing of drug reinforcers, the undervalued of alternative rein forcers, and deficits in inhibitory control for drug responses.
Abstract: OBJECTIVE: Studies of the neurobiological processes underlying drug addiction primarily have focused on limbic subcortical structures. Here the authors evaluated the role of frontal cortical structures in drug addiction. METHOD: An integrated model of drug addiction that encompasses intoxication, bingeing, withdrawal, and craving is proposed. This model and findings from neuroimaging studies on the behavioral, cognitive, and emotional processes that are at the core of drug addiction were used to analyze the involvement of frontal structures in drug addiction. RESULTS: The orbitofrontal cortex and the anterior cingulate gyrus, which are regions neuroanatomically connected with limbic structures, are the frontal cortical areas most frequently implicated in drug addiction. They are activated in addicted subjects during intoxication, craving, and bingeing, and they are deactivated during withdrawal. These regions are also involved in higher-order cognitive and motivational functions, such as the ability to tr...

2,415 citations

Journal ArticleDOI
TL;DR: Three rare human genetic disorders, which result in deleterious effects on sensory perception, cognition and a variety of behaviours, have been shown to be attributable to mutations in brain-derived neurotrophic factor and two of the Trk receptors.
Abstract: Neurotrophins are a family of closely related proteins that were identified initially as survival factors for sensory and sympathetic neurons, and have since been shown to control many aspects of survival, development and function of neurons in both the peripheral and the central nervous systems. Each of the four mammalian neurotrophins has been shown to activate one or more of the three members of the tropomyosin-related kinase (Trk) family of receptor tyrosine kinases (TrkA, TrkB and TrkC). In addition, each neurotrophin activates p75 neurotrophin receptor (p75NTR), a member of the tumour necrosis factor receptor superfamily. Through Trk receptors, neurotrophins activate Ras, phosphatidyl inositol-3 (PI3)-kinase, phospholipase C-g1 and signalling pathways controlled through these proteins, such as the MAP kinases. Activation of p75NTR results in activation of the nuclear factor-kB (NF-kB) and Jun kinase as well as other signalling pathways. Limiting quantities of neurotrophins during development control the number of surviving neurons to ensure a match between neurons and the requirement for a suitable density of target innervation. The neurotrophins also regulate cell fate decisions, axon growth, dendrite growth and pruning and the expression of proteins, such as ion channels, transmitter biosynthetic enzymes and neuropeptide transmitters that are essential for normal neuronal function. Continued presence of the neurotrophins is required in the adult nervous system, where they control synaptic function and plasticity, and sustain neuronal survival, morphology and differentiation. They also have additional, subtler roles outside the nervous system. In recent years, three rare human genetic disorders, which result in deleterious effects on sensory perception, cognition and a variety of behaviours, have been shown to be attributable to mutations in brain-derived neurotrophic factor and two of the Trk receptors.

1,946 citations