scispace - formally typeset
Search or ask a question
Author

Albert Castell

Other affiliations: University of Lleida
Bio: Albert Castell is an academic researcher from Canadian Real Estate Association. The author has contributed to research in topics: Thermal energy storage & Phase-change material. The author has an hindex of 38, co-authored 78 publications receiving 6445 citations. Previous affiliations of Albert Castell include University of Lleida.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of the latest publications on the use of phase change materials (PCM) in buildings is presented in this article, where the authors present a classification of materials, materials available and problems and possible solutions on the application of such materials in buildings.
Abstract: In recent years the use of thermal energy storage with phase change materials has become a topic with a lot of interest within the research community, but also within architects and engineers. Many publications have appeared, and several books, but the information is disseminated and not very much organised. This paper shows a review of the latest publications on the use of phase change materials (PCM) in buildings. The paper compiles information about the requirements of the use of this technology, classification of materials, materials available and problems and possible solutions on the application of such materials in buildings.

1,389 citations

Journal ArticleDOI
TL;DR: In this article, a review summarizes and organizes the literature on life cycle assessment (LCA), life cycle energy analysis (LCEA), and life cycle cost analysis for environmental evaluation of buildings and building related industry and sector (including construction products, construction systems, buildings, and civil engineering constructions).
Abstract: This review summarizes and organizes the literature on life cycle assessment (LCA), life cycle energy analysis (LCEA) and life cycle cost analysis (LCCA) studies carried out for environmental evaluation of buildings and building related industry and sector (including construction products, construction systems, buildings, and civil engineering constructions). The review shows that most LCA and LCEA are carried out in what is shown as “exemplary buildings”, that is, buildings that have been designed and constructed as low energy buildings, but there are very few studies on “traditional buildings”, that is, buildings such as those mostly found in our cities. Similarly, most studies are carried out in urban areas, while rural areas are not well represented in the literature. Finally, studies are not equally distributed around the world.

965 citations

Journal ArticleDOI
TL;DR: In this article, a review of thermal energy storage (TES) for cold storage applications using solid liquid phase change materials has been carried out, focusing on different aspects: phase change material (PCM), encapsulation, heat transfer enhancement, and the effect of storage on food quality.

851 citations

Journal ArticleDOI
TL;DR: In this paper, the results of an experimental set-up to test phase change materials with two typical construction materials (conventional and alveolar brick) for Mediterranean construction in real conditions were presented.

452 citations

Journal ArticleDOI
TL;DR: In this paper, a review of performances obtained under practical conditions by the different prototypes built over the last two decades is presented, and the main advantages and disadvantages of solid-gas chemical sorption processes and chemical reactions are summarized.
Abstract: Thermal energy storage and conversion aims to improve the high inefficiency of the industrial processes and renewable energy systems (supply versus demand). Chemical sorption processes and chemical reactions based on solid–gas systems are a promising way to store and convert thermal energy for heating or cooling applications and, thereby to increase the efficiency of the processes and to reduce the greenhouse effect. Although more efforts are required to bring this technology to the market, some important breakthrough have been made regarding to system efficiency. Over the last two decades, the experimental research in this field has increased largely to validate these advances under practical conditions. Therefore, this paper gives a state-of-art review of performances obtained under practical conditions by the different prototypes built over the last two decades. In addition, the main advantages and disadvantages of solid–gas chemical sorption processes and chemical reactions are summarized.

305 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the phase change problem has been formulated using pure conduction approach but the problem has moved to a different level of complexity with added convection in the melt being accounted for, which makes it difficult for comparison to be made to assess the suitability of PCMs to particular applications.
Abstract: This paper reviews the development of latent heat thermal energy storage systems studied detailing various phase change materials (PCMs) investigated over the last three decades, the heat transfer and enhancement techniques employed in PCMs to effectively charge and discharge latent heat energy and the formulation of the phase change problem. It also examines the geometry and configurations of PCM containers and a series of numerical and experimental tests undertaken to assess the effects of parameters such as the inlet temperature and the mass flow rate of the heat transfer fluid (HTF). It is concluded that most of the phase change problems have been carried out at temperature ranges between 0 °C and 60 °C suitable for domestic heating applications. In terms of problem formulation, the common approach has been the use of enthalpy formulation. Heat transfer in the phase change problem was previously formulated using pure conduction approach but the problem has moved to a different level of complexity with added convection in the melt being accounted for. There is no standard method (such as British Standards or EU standards) developed to test for PCMs, making it difficult for comparison to be made to assess the suitability of PCMs to particular applications. A unified platform such as British Standards, EU standards needs to be developed to ensure same or similar procedure and analysis (performance curves) to allow comparison and knowledge gained from one test to be applied to another.

1,630 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized previous works on latent thermal energy storage in building applications, covering PCMs, the impregnation methods, current building applications and their thermal performance analyses, as well as numerical simulation of buildings with PCMs.

1,569 citations

Journal ArticleDOI
TL;DR: In this article, the state of the art of phase change materials for thermal energy storage applications is reviewed and an insight into recent efforts to develop new phase change material with enhanced performance and safety.

1,399 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a review of solar collectors and thermal energy storage systems, including both non-concentrating collectors and concentrating collectors, in terms of optical optimisation, heat loss reduction, heat recuperation enhancement and different sun-tracking mechanisms.

1,370 citations

Journal ArticleDOI
TL;DR: In this article, the status and current trends of energy consumption, CO2 emissions and energy policies in the residential sector, both globally and in those ten countries, were reviewed, and it was found that global residential energy consumption grew by 14% from 2000 to 2011, where population, urbanization and economic growth have been the main driving factors.
Abstract: Climate change and global warming as the main human societies’ threats are fundamentally associated with energy consumption and GHG emissions. The residential sector, representing 27% and 17% of global energy consumption and CO2 emissions, respectively, has a considerable role to mitigate global climate change. Ten countries, including China, the US, India, Russia, Japan, Germany, South Korea, Canada, Iran, and the UK, account for two-thirds of global CO2 emissions. Thus, these countries’ residential energy consumption and GHG emissions have direct, significant effects on the world environment. The aim of this paper is to review the status and current trends of energy consumption, CO2 emissions and energy policies in the residential sector, both globally and in those ten countries. It was found that global residential energy consumption grew by 14% from 2000 to 2011. Most of this increase has occurred in developing countries, where population, urbanization and economic growth have been the main driving factors. Among the ten studied countries, all of the developed ones have shown a promising trend of reduction in CO2 emissions, apart from the US and Japan, which showed a 4% rise. Globally, the residential energy market is dominated by traditional biomass (40% of the total) followed by electricity (21%) and natural gas (20%), but the total proportion of fossil fuels has decreased over the past decade. Energy policy plays a significant role in controlling energy consumption. Different energy policies, such as building energy codes, incentives, energy labels have been employed by countries. Those policies can be successful if they are enhanced by making them mandatory, targeting net-zero energy building, and increasing public awareness about new technologies. However, developing countries, such as China, India and Iran, still encounter with considerable growth in GHG emissions and energy consumption, which are mostly related to the absence of strong, efficient policy.

1,212 citations