scispace - formally typeset
Search or ask a question
Author

Albert G. Nasibulin

Bio: Albert G. Nasibulin is an academic researcher from Skolkovo Institute of Science and Technology. The author has contributed to research in topics: Carbon nanotube & Materials science. The author has an hindex of 53, co-authored 373 publications receiving 10863 citations. Previous affiliations of Albert G. Nasibulin include Aalto University & University of Texas at Dallas.


Papers
More filters
Journal ArticleDOI
TL;DR: The fabrication of high-performance thin-film transistors and integrated circuits on flexible and transparent substrates using floating-catalyst chemical vapour deposition followed by a simple gas-phase filtration and transfer process has a well-controlled density and a unique morphology.
Abstract: Carbon nanotube thin-film transistors are expected to enable the fabrication of high-performance, flexible and transparent devices using relatively simple techniques. However, as-grown nanotube networks usually contain both metallic and semiconducting nanotubes, which leads to a trade-off between charge-carrier mobility (which increases with greater metallic tube content) and on/off ratio (which decreases). Many approaches to separating metallic nanotubes from semiconducting nanotubes have been investigated, but most lead to contamination and shortening of the nanotubes, thus reducing performance. Here, we report the fabrication of high-performance thin-film transistors and integrated circuits on flexible and transparent substrates using floating-catalyst chemical vapour deposition followed by a simple gas-phase filtration and transfer process. The resulting nanotube network has a well-controlled density and a unique morphology, consisting of long (~10 µm) nanotubes connected by low-resistance Y-shaped junctions. The transistors simultaneously demonstrate a mobility of 35 cm(2) V(-1) s(-1) and an on/off ratio of 6 × 10(6). We also demonstrate flexible integrated circuits, including a 21-stage ring oscillator and master-slave delay flip-flops that are capable of sequential logic. Our fabrication procedure should prove to be scalable, for example, by using high-throughput printing techniques.

695 citations

Journal ArticleDOI
TL;DR: In this paper, the role of metal nanoparticles in the formation of single-walled carbon nanotubes (SWCNTs) is reviewed with an emphasis on their role in the processes.
Abstract: Recent progress in chemical vapour deposition and aerosol synthesis of single-walled carbon nanotubes (SWCNTs) is reviewed with an emphasis on the role of metal nanoparticles in the processes. The effect of the various parameters on SWCNT formation is reported on the basis of published experiments. Evolution of the catalyst particle size distribution due to collision, sintering and evaporation of metal during SWCNT synthesis is discussed. The active catalyst has been demonstrated to be in a reduced metal form by comparison of the experimental data and calculations regarding the equilibrium concentration of carbon and oxygen in iron. Also the effect of the catalyst particle size on melting temperature and carbon solubility in metal is discussed. The stability of different carbon precursors (hydrocarbons and carbon monoxide) is considered thermodynamically. Furthermore, estimation of the maximum length of 1 and 2.5 nm diameter SWCNTs as a function of carbon solubility is conducted to determine whether carbon dissolution and precipitation are simultaneous or subsequent process steps.

523 citations

Journal ArticleDOI
TL;DR: The field-emission characteristics of NanoBuds suggest that they may possess advantageous properties compared with single-walled nanotubes or fullerenes alone, or in their non-bonded configurations.
Abstract: Both fullerenes and single-walled carbon nanotubes (SWNTs) exhibit many advantageous properties. Despite the similarities between these two forms of carbon, there have been very few attempts to physically merge them. We have discovered a novel hybrid material that combines fullerenes and SWNTs into a single structure in which the fullerenes are covalently bonded to the outer surface of the SWNTs. These fullerene-functionalized SWNTs, which we have termed NanoBuds, were selectively synthesized in two different one-step continuous methods, during which fullerenes were formed on iron-catalyst particles together with SWNTs during CO disproportionation. The field-emission characteristics of NanoBuds suggest that they may possess advantageous properties compared with single-walled nanotubes or fullerenes alone, or in their non-bonded configurations.

398 citations

Journal ArticleDOI
TL;DR: An aerosol CVD process to dry deposit large-area SWCNT networks with tunable conductivity and optical transmittance on a wide range of substrates including flexible polymers is demonstrated.
Abstract: We demonstrate an aerosol CVD process to dry deposit large-area SWCNT networks with tunable conductivity and optical transmittance on a wide range of substrates including flexible polymers. These SWCNT networks can be chemically doped to reach a sheet resistance of as low as 110 Ω/◻ at 90% optical transmittance. A wide application potential of these networks is demonstrated by fabricating SWCNT network-based devices such as a transparent capacitive touch sensors, thin-film transistors (TFTs), and bright organic light-emitting diodes (OLEDs).

372 citations

Journal ArticleDOI
10 Mar 2011-ACS Nano
TL;DR: In this article, a simple and rapid method to prepare multifunctional free-standing single-walled carbon nanotube (SWCNT) films with variable thicknesses ranging from a submonolayer to a few micrometers having outstanding properties for a broad range of exceptionally performing devices was reported.
Abstract: We report a simple and rapid method to prepare multifunctional free-standing single-walled carbon nanotube (SWCNT) films with variable thicknesses ranging from a submonolayer to a few micrometers having outstanding properties for a broad range of exceptionally performing devices. We have fabricated state-of-the-art key components from the same single component multifunctional SWCNT material for several high-impact application areas: high efficiency nanoparticle filters with a figure of merit of 147 Pa−1, transparent and conductive electrodes with a sheet resistance of 84 Ω/◻ and a transmittance of 90%, electrochemical sensors with extremely low detection limits below 100 nM, and polymer-free saturable absorbers for ultrafast femtosecond lasers. Furthermore, the films are demonstrated as the main components in gas flowmeters, gas heaters, and transparent thermoacoustic loudspeakers.

308 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
01 Feb 2013-Science
TL;DR: Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.
Abstract: Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.

4,596 citations