scispace - formally typeset
Search or ask a question
Author

Albert Kai-Sun Wong

Other affiliations: United States Naval Research Laboratory, Alcatel-Lucent, Nokia  ...read more
Bio: Albert Kai-Sun Wong is an academic researcher from Hong Kong University of Science and Technology. The author has contributed to research in topics: Network packet & Thermoelastic damping. The author has an hindex of 23, co-authored 98 publications receiving 2105 citations. Previous affiliations of Albert Kai-Sun Wong include United States Naval Research Laboratory & Alcatel-Lucent.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper proposes convex estimators specifically for the RSS-based localization problems and applies the semidefinite relaxation technique to the derived nonconvex estimator, which improves the estimation performance.
Abstract: The received signal strength (RSS)-based approach to wireless localization offers the advantage of low cost and easy implementability. To circumvent the nonconvexity of the conventional maximum likelihood (ML) estimator, in this paper, we propose convex estimators specifically for the RSS-based localization problems. Both noncooperative and cooperative schemes are considered. We start with the noncooperative RSS-based localization problem and derive a nonconvex estimator that approximates the ML estimator but has no logarithm in the residual. Next, we apply the semidefinite relaxation technique to the derived nonconvex estimator and develop a convex estimator. To further improve the estimation performance, we append the ML estimator to the convex estimator with the result by the convex estimator as the initial point. We then extend these techniques to the cooperative localization problem. The corresponding Cramer-Rao lower bounds (CRLB) are derived as performance benchmarks. Our proposed convex estimators comply well with the RSS measurement model, and simulation results clearly demonstrate their superior performance for RSS-based wireless localization.

273 citations

Journal ArticleDOI
TL;DR: In this article, a model-based technique for the detection and diagnosis of gear faults was proposed based on the signal averaging technique, the proposed technique first establishes an autoregressive (AR) model on the vibration signal of the gear of interest in its healthy state.
Abstract: This paper presents a model-based technique for the detection and diagnosis of gear faults. Based on the signal averaging technique, the proposed technique first establishes an autoregressive (AR) model on the vibration signal of the gear of interest in its healthy-state. The model is then used as a linear prediction error filter to process the future-state signal from the same gear. The health condition of the gear is diagnosed by characterizing the error signal between the filtered and unfiltered signals. The technique is validated using both numerical simulation and experimental data. The results show that the AR model technique is an effective tool in the detection and diagnosis of gear faults and it may lead to an effective solution for in-flight diagnosis of helicopter transmissions.

239 citations

Journal ArticleDOI
TL;DR: In this paper, it is shown that the stress dependence of the thermoelastic constant can be explained by the temperature dependence of elastic properties of the material, and excellent agreement between the theoretical predictions and experimental data is achieved.

131 citations

Journal ArticleDOI
TL;DR: In this article, a revised theory of the thermoelastic effect was presented which offers an explanation of the mean stress dependence of the thermodynamic constant, and further experimental results were presented to validate this theory, and to demonstrate that the predicted higher harmonic thermal response of a body under a single frequency excitation is indeed observable.

103 citations

Patent
Vikram Punj1, Albert Kai-Sun Wong1
13 Aug 1991
Abstract: This invention relates to a method and apparatus for transmitting constant and variable bit rate traffic in a broadband ISDN switch. Data from constant bit rate sources such as television cameras is entered into a group of queues. Each member of the group for queuing data of a different band of bit rates. Data is transmitted from these queues with highest priority from the queue storing data of the highest band of bit rates. If the longest enqueued entity of data in one of the other queues has been enqueued for more than a prespecified period, its priority is increased. Analytic studies have shown that use of three queues for constant bit rate traffic and a fourth queue for variable bit rate traffic allows a high occupancy in the output channels to be maintained with a negligible number of data entities excessively delayed.

99 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of the PHM field is provided, followed by an introduction of a systematic PHM design methodology, 5S methodology, for converting data to prognostics information, to enable rapid customization and integration of PHM systems for diverse applications.

1,164 citations

Journal ArticleDOI
01 May 2013
TL;DR: In this paper, Flying Ad-Hoc Networks (FANETs) are surveyed which is an ad hoc network connecting the UAVs, and the main FANET design challenges are introduced.
Abstract: One of the most important design problems for multi-UAV (Unmanned Air Vehicle) systems is the communication which is crucial for cooperation and collaboration between the UAVs. If all UAVs are directly connected to an infrastructure, such as a ground base or a satellite, the communication between UAVs can be realized through the in-frastructure. However, this infrastructure based communication architecture restricts the capabilities of the multi-UAV systems. Ad-hoc networking between UAVs can solve the problems arising from a fully infrastructure based UAV networks. In this paper, Flying Ad-Hoc Networks (FANETs) are surveyed which is an ad hoc network connecting the UAVs. The differences between FANETs, MANETs (Mobile Ad-hoc Networks) and VANETs (Vehicle Ad-Hoc Networks) are clarified first, and then the main FANET design challenges are introduced. Along with the existing FANET protocols, open research issues are also discussed.

1,072 citations

Journal ArticleDOI
TL;DR: This survey overviews recent advances on two major areas of Wi-Fi fingerprint localization: advanced localization techniques and efficient system deployment.
Abstract: The growing commercial interest in indoor location-based services (ILBS) has spurred recent development of many indoor positioning techniques. Due to the absence of global positioning system (GPS) signal, many other signals have been proposed for indoor usage. Among them, Wi-Fi (802.11) emerges as a promising one due to the pervasive deployment of wireless LANs (WLANs). In particular, Wi-Fi fingerprinting has been attracting much attention recently because it does not require line-of-sight measurement of access points (APs) and achieves high applicability in complex indoor environment. This survey overviews recent advances on two major areas of Wi-Fi fingerprint localization: advanced localization techniques and efficient system deployment. Regarding advanced techniques to localize users, we present how to make use of temporal or spatial signal patterns, user collaboration, and motion sensors. Regarding efficient system deployment, we discuss recent advances on reducing offline labor-intensive survey, adapting to fingerprint changes, calibrating heterogeneous devices for signal collection, and achieving energy efficiency for smartphones. We study and compare the approaches through our deployment experiences, and discuss some future directions.

1,069 citations

Journal ArticleDOI
TL;DR: In this article, the authors survey the channel state information (CSI) in 802.11 a/g/n and highlight the differences between CSI and RSSI with respect to network layering, time resolution, frequency resolution, stability, and accessibility.
Abstract: The spatial features of emitted wireless signals are the basis of location distinction and determination for wireless indoor localization. Available in mainstream wireless signal measurements, the Received Signal Strength Indicator (RSSI) has been adopted in vast indoor localization systems. However, it suffers from dramatic performance degradation in complex situations due to multipath fading and temporal dynamics.Break-through techniques resort to finer-grained wireless channel measurement than RSSI. Different from RSSI, the PHY layer power feature, channel response, is able to discriminate multipath characteristics, and thus holds the potential for the convergence of accurate and pervasive indoor localization. Channel State Information (CSI, reflecting channel response in 802.11 a/g/n) has attracted many research efforts and some pioneer works have demonstrated submeter or even centimeter-level accuracy. In this article, we survey this new trend of channel response in localization. The differences between CSI and RSSI are highlighted with respect to network layering, time resolution, frequency resolution, stability, and accessibility. Furthermore, we investigate a large body of recent works and classify them overall into three categories according to how to use CSI. For each category, we emphasize the basic principles and address future directions of research in this new and largely open area.

704 citations

01 Jan 2014
TL;DR: This article surveys the new trend of channel response in localization and investigates a large body of recent works and classify them overall into three categories according to how to use CSI, highlighting the differences between CSI and RSSI.
Abstract: The spatial features of emitted wireless signals are the basis of location distinction and determination for wireless indoor localization. Available in mainstream wireless signal measurements, the Received Signal Strength Indicator (RSSI) has been adopted in vast indoor localization systems. However, it suffers from dramatic performance degradation in complex situations due to multipath fading and temporal dynamics. Break-through techniques resort to finer-grained wireless channel measurement than RSSI. Different from RSSI, the PHY layer power feature, channel response, is able to discriminate multipath characteristics, and thus holds the potential for the convergence of accurate and pervasive indoor localization. Channel State Information (CSI, reflecting channel response in 802.11 a/g/n) has attracted many research efforts and some pioneer works have demonstrated submeter or even centimeter-level accuracy. In this article, we survey this new trend of channel response in localization. The differences between CSI and RSSI are highlighted with respect to network layering, time resolution, frequency resolution, stability, and accessibility. Furthermore, we investigate a large body of recent works and classify them overall into three categories according to how to use CSI. For each category, we emphasize the basic principles and address future directions of research in this new and largely open area.

612 citations