scispace - formally typeset
A

Albert-László Barabási

Researcher at Northeastern University

Publications -  463
Citations -  217721

Albert-László Barabási is an academic researcher from Northeastern University. The author has contributed to research in topics: Complex network & Network science. The author has an hindex of 152, co-authored 438 publications receiving 200119 citations. Previous affiliations of Albert-László Barabási include Budapest University of Technology and Economics & Lawrence Livermore National Laboratory.

Papers
More filters
Journal ArticleDOI

Emergence of Scaling in Random Networks

TL;DR: A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
Journal ArticleDOI

Statistical mechanics of complex networks

TL;DR: In this paper, a simple model based on the power-law degree distribution of real networks was proposed, which was able to reproduce the power law degree distribution in real networks and to capture the evolution of networks, not just their static topology.
Journal ArticleDOI

Error and attack tolerance of complex networks

TL;DR: It is found that scale-free networks, which include the World-Wide Web, the Internet, social networks and cells, display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected even by unrealistically high failure rates.
Journal ArticleDOI

Network biology: understanding the cell's functional organization

TL;DR: This work states that rapid advances in network biology indicate that cellular networks are governed by universal laws and offer a new conceptual framework that could potentially revolutionize the view of biology and disease pathologies in the twenty-first century.
Journal ArticleDOI

Understanding individual human mobility patterns

TL;DR: In this article, the authors study the trajectory of 100,000 anonymized mobile phone users whose position is tracked for a six-month period and find that the individual travel patterns collapse into a single spatial probability distribution, indicating that humans follow simple reproducible patterns.