scispace - formally typeset
Search or ask a question
Author

Albert-László Barabási

Bio: Albert-László Barabási is an academic researcher from Northeastern University. The author has contributed to research in topics: Complex network & Network science. The author has an hindex of 152, co-authored 438 publications receiving 200119 citations. Previous affiliations of Albert-László Barabási include Budapest University of Technology and Economics & Lawrence Livermore National Laboratory.


Papers
More filters
Proceedings Article
27 Jul 2014
TL;DR: A generative probabilistic framework using a reinforced Poisson process to explicitly model the process through which individual items gain their popularity and its remarkable power at predicting the popularity of individual items is proposed.
Abstract: An ability to predict the popularity dynamics of individual items within a complex evolving system has important implications in an array of areas. Here we propose a generative probabilistic framework using a reinforced Poisson process to explicitly model the process through which individual items gain their popularity. This model distinguishes itself from existing models via its capability of modeling the arrival process of popularity and its remarkable power at predicting the popularity of individual items. It possesses the flexibility of applying Bayesian treatment to further improve the predictive power using a conjugate prior. Extensive experiments on a longitudinal citation dataset demonstrate that this model consistently outperforms existing popularity prediction methods.

202 citations

Journal ArticleDOI
19 Apr 1999-Nature
TL;DR: In this article, it was shown that the application of analternating current to a superconductor patterned with an asymmetric pinning potential can induce vortex motion whose direction is determined only by the asymmetry of the pattern.
Abstract: A serious obstacle impeding the application of low- and high-temperature superconductor devices is the presence of trapped magnetic flux1,2: flux lines or vortices can be induced by fields as small as the Earth's magnetic field. Once present, vortices dissipate energy and generate internal noise, limiting the operation of numerous superconducting devices2,3. Methods used to overcome this difficulty include the pinning of vortices by the incorporation of impurities and defects4, the construction of flux ‘dams’5, slots and holes6, and magnetic shields2,3 which block the penetration of new flux lines in the bulk of the superconductor or reduce the magnetic field in the immediate vicinity of the superconducting device. The most desirable method would be to remove the vortices from the bulk of the superconductor, but there was hitherto no known phenomenon that could form the basis for such a process. Here we show that the application of analternating current to a superconductor patterned with an asymmetric pinning potential can induce vortex motion whose direction is determined only by the asymmetry of the pattern. The mechanism responsible for this phenomenon is the so-called ‘ratchet effect’7,8,9,10, and its working principle applies to both low- and high-temperature superconductors. We demonstrate theoretically that, with an appropriate choice of pinning potential, the ratchet effect can be used to remove vortices from low-temperature superconductors in the parameter range required for various applications.

200 citations

Journal ArticleDOI
TL;DR: It is shown that for random networks the ranking provided by pagerank is sensitive to perturbations in the network topology, making it unreliable for incomplete or noisy systems, and in scale-free networks this is predicted analytically the emergence of super-stable nodes whose ranking is exceptionally stable toperturbations.
Abstract: Pagerank, a network-based diffusion algorithm, has emerged as the leading method to rank web content, ecological species and even scientists. Despite its wide use, it remains unknown how the structure of the network on which it operates affects its performance. Here we show that for random networks the ranking provided by pagerank is sensitive to perturbations in the network topology, making it unreliable for incomplete or noisy systems. In contrast, in scale-free networks we predict analytically the emergence of super-stable nodes whose ranking is exceptionally stable to perturbations. We calculate the dependence of the number of super-stable nodes on network characteristics and demonstrate their presence in real networks, in agreement with the analytical predictions. These results not only deepen our understanding of the interplay between network topology and dynamical processes but also have implications in all areas where ranking has a role, from science to marketing.

199 citations

Journal ArticleDOI
01 Aug 2014-Science
TL;DR: A network of cultural centers connected via the birth and death of more than 150,000 notable individuals revealed human mobility patterns and cultural attraction dynamics and provides a macroscopic perspective of cultural history that helps retrace cultural narratives of Europe and North America using large-scale visualization and quantitative dynamical tools.
Abstract: The emergent processes driving cultural history are a product of complex interactions among large numbers of individuals, determined by difficult-to-quantify historical conditions. To characterize these processes, we have reconstructed aggregate intellectual mobility over two millennia through the birth and death locations of more than 150,000 notable individuals. The tools of network and complexity theory were then used to identify characteristic statistical patterns and determine the cultural and historical relevance of deviations. The resulting network of locations provides a macroscopic perspective of cultural history, which helps us to retrace cultural narratives of Europe and North America using large-scale visualization and quantitative dynamical tools and to derive historical trends of cultural centers beyond the scope of specific events or narrow time intervals.

188 citations

Journal ArticleDOI
TL;DR: Measurements of the interface formed when a wet frount propagates in paper by imhibition are reported and anomalous roughening is found with exponent α=0.63±0.04 and the imhibition model is formulated that agrees with the experimental morphology.
Abstract: We report measurements of the interface formed when a wet front propagates in paper by imbibition and we find anomalous roughening with exponent \ensuremath{\alpha}=0.63\ifmmode\pm\else\textpm\fi{}0.04. We also formulate an imbibition model that agrees with the experimental morphology. The main ingredient of the model is the propagation and pinning of a self-affine interface in the presence of quenched disorder, with erosion of overhangs. By relating our model to directed percolation, we find \ensuremath{\alpha}\ensuremath{\simeq}0.63.

187 citations


Cited by
More filters
Journal ArticleDOI
15 Oct 1999-Science
TL;DR: A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
Abstract: Systems as diverse as genetic networks or the World Wide Web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature was found to be a consequence of two generic mechanisms: (i) networks expand continuously by the addition of new vertices, and (ii) new vertices attach preferentially to sites that are already well connected. A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.

33,771 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, a simple model based on the power-law degree distribution of real networks was proposed, which was able to reproduce the power law degree distribution in real networks and to capture the evolution of networks, not just their static topology.
Abstract: The emergence of order in natural systems is a constant source of inspiration for both physical and biological sciences. While the spatial order characterizing for example the crystals has been the basis of many advances in contemporary physics, most complex systems in nature do not offer such high degree of order. Many of these systems form complex networks whose nodes are the elements of the system and edges represent the interactions between them. Traditionally complex networks have been described by the random graph theory founded in 1959 by Paul Erdohs and Alfred Renyi. One of the defining features of random graphs is that they are statistically homogeneous, and their degree distribution (characterizing the spread in the number of edges starting from a node) is a Poisson distribution. In contrast, recent empirical studies, including the work of our group, indicate that the topology of real networks is much richer than that of random graphs. In particular, the degree distribution of real networks is a power-law, indicating a heterogeneous topology in which the majority of the nodes have a small degree, but there is a significant fraction of highly connected nodes that play an important role in the connectivity of the network. The scale-free topology of real networks has very important consequences on their functioning. For example, we have discovered that scale-free networks are extremely resilient to the random disruption of their nodes. On the other hand, the selective removal of the nodes with highest degree induces a rapid breakdown of the network to isolated subparts that cannot communicate with each other. The non-trivial scaling of the degree distribution of real networks is also an indication of their assembly and evolution. Indeed, our modeling studies have shown us that there are general principles governing the evolution of networks. Most networks start from a small seed and grow by the addition of new nodes which attach to the nodes already in the system. This process obeys preferential attachment: the new nodes are more likely to connect to nodes with already high degree. We have proposed a simple model based on these two principles wich was able to reproduce the power-law degree distribution of real networks. Perhaps even more importantly, this model paved the way to a new paradigm of network modeling, trying to capture the evolution of networks, not just their static topology.

18,415 citations