scispace - formally typeset
Search or ask a question
Author

Albert-László Barabási

Bio: Albert-László Barabási is an academic researcher from Northeastern University. The author has contributed to research in topics: Complex network & Network science. The author has an hindex of 152, co-authored 438 publications receiving 200119 citations. Previous affiliations of Albert-László Barabási include Budapest University of Technology and Economics & Lawrence Livermore National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: This work studies real anomalous events using country-wide mobile phone data, finding that information flow during emergencies is dominated by repeated communications and the observed communication patterns cannot be explained by inherent reciprocity in social networks, and are universal across different demographics.
Abstract: Recent advances on human dynamics have focused on the normal patterns of human activities, with the quantitative understanding of human behavior under extreme events remaining a crucial missing chapter. This has a wide array of potential applications, ranging from emergency response and detection to traffic control and management. Previous studies have shown that human communications are both temporally and spatially localized following the onset of emergencies, indicating that social propagation is a primary means to propagate situational awareness. We study real anomalous events using country-wide mobile phone data, finding that information flow during emergencies is dominated by repeated communications. We further demonstrate that the observed communication patterns cannot be explained by inherent reciprocity in social networks, and are universal across different demographics.

66 citations

Journal ArticleDOI
TL;DR: This work formulated and solved a model that incorporates the minimal processes governing network evolution, distinguishing between node and edge addition, vertex fitness and the deletion of nodes and edges.
Abstract: The growth and evolution of networks has elicited considerable interest from the scientific community and a number of mechanistic models have been proposed to explain their observed degree distributions. Various microscopic processes have been incorporated in these models, among them, node and edge addition, vertex fitness and the deletion of nodes and edges. The existing models, however, focus on specific combinations of these processes and parameterize them in a way that makes it difficult to elucidate the role of the individual elementary mechanisms. We therefore formulated and solved a model that incorporates the minimal processes governing network evolution. Some contribute to growth such as the formation of connections between existing pair of vertices, while others capture deletion; the removal of a node with its corresponding edges, or the removal of an edge between a pair of vertices. We distinguish between these elementary mechanisms, identifying their specific role on network evolution.

66 citations

Journal ArticleDOI
TL;DR: The following discussion is an edited summary of the public debate started during the conference "Growing Networks and Graphs in Statistical Physics, Finance, Biology and Social Systems" held in Rome in September 2003 as discussed by the authors.
Abstract: The following discussion is an edited summary of the public debate started during the conference "Growing Networks and Graphs in Statistical Physics, Finance, Biology and Social Systems" held in Rome in September 2003 Drafts documents were circulated electronically among experts in the field and additions and follow-up to the original discussion have been included Among the scientists participating to the discussion L A N Amaral, A Barrat, A L Barabasi, G Caldarelli, P De Los Rios, A Erzan, B Kahng, R Mantegna, J F F Mendes, R Pastor-Satorras, A Vespignani are acknowledged for their contributions and editing

63 citations

Proceedings Article
11 Jul 2019
TL;DR: This article investigated the representation power of graph convolutional networks through the looking glass of graph moments, a key property of graph topology encoding path of various lengths, and found that depth is much more influential than width and deeper GCNs are more capable of learning higher order graph moments.
Abstract: To deepen our understanding of graph neural networks, we investigate the representation power of Graph Convolutional Networks (GCN) through the looking glass of graph moments, a key property of graph topology encoding path of various lengths. We find that GCNs are rather restrictive in learning graph moments. Without careful design, GCNs can fail miserably even with multiple layers and nonlinear activation functions. We analyze theoretically the expressiveness of GCNs, arriving at a modular GCN design, using different propagation rules. Our modular design is capable of distinguishing graphs from different graph generation models for surprisingly small graphs, a notoriously difficult problem in network science. Our investigation suggests that, depth is much more influential than width and deeper GCNs are more capable of learning higher order graph moments. Additionally, combining GCN modules with different propagation rules is critical to the representation power of GCNs.

63 citations

Journal ArticleDOI
TL;DR: By identifying the underlying mechanisms that connect time-scale difference and controllability for a simplified model, this work provides crucial insight into disentangling how the ability to control real interacting complex systems is affected by a variety of sources of complexity.
Abstract: The paradigm of layered networks is used to describe many real-world systems, from biological networks to social organizations and transportation systems. While recently there has been much progress in understanding the general properties of multilayer networks, our understanding of how to control such systems remains limited. One fundamental aspect that makes this endeavor challenging is that each layer can operate at a different time scale; thus, we cannot directly apply standard ideas from structural control theory of individual networks. Here we address the problem of controlling multilayer and multi-time-scale networks focusing on two-layer multiplex networks with one-to-one interlayer coupling. We investigate the practically relevant case when the control signal is applied to the nodes of one layer. We develop a theory based on disjoint path covers to determine the minimum number of inputs (N_{i}) necessary for full control. We show that if both layers operate on the same time scale, then the network structure of both layers equally affect controllability. In the presence of time-scale separation, controllability is enhanced if the controller interacts with the faster layer: N_{i} decreases as the time-scale difference increases up to a critical time-scale difference, above which N_{i} remains constant and is completely determined by the faster layer. We show that the critical time-scale difference is large if layer I is easy and layer II is hard to control in isolation. In contrast, control becomes increasingly difficult if the controller interacts with the layer operating on the slower time scale and increasing time-scale separation leads to increased N_{i}, again up to a critical value, above which N_{i} still depends on the structure of both layers. This critical value is largely determined by the longest path in the faster layer that does not involve cycles. By identifying the underlying mechanisms that connect time-scale difference and controllability for a simplified model, we provide crucial insight into disentangling how our ability to control real interacting complex systems is affected by a variety of sources of complexity.

63 citations


Cited by
More filters
Journal ArticleDOI
15 Oct 1999-Science
TL;DR: A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
Abstract: Systems as diverse as genetic networks or the World Wide Web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature was found to be a consequence of two generic mechanisms: (i) networks expand continuously by the addition of new vertices, and (ii) new vertices attach preferentially to sites that are already well connected. A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.

33,771 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, a simple model based on the power-law degree distribution of real networks was proposed, which was able to reproduce the power law degree distribution in real networks and to capture the evolution of networks, not just their static topology.
Abstract: The emergence of order in natural systems is a constant source of inspiration for both physical and biological sciences. While the spatial order characterizing for example the crystals has been the basis of many advances in contemporary physics, most complex systems in nature do not offer such high degree of order. Many of these systems form complex networks whose nodes are the elements of the system and edges represent the interactions between them. Traditionally complex networks have been described by the random graph theory founded in 1959 by Paul Erdohs and Alfred Renyi. One of the defining features of random graphs is that they are statistically homogeneous, and their degree distribution (characterizing the spread in the number of edges starting from a node) is a Poisson distribution. In contrast, recent empirical studies, including the work of our group, indicate that the topology of real networks is much richer than that of random graphs. In particular, the degree distribution of real networks is a power-law, indicating a heterogeneous topology in which the majority of the nodes have a small degree, but there is a significant fraction of highly connected nodes that play an important role in the connectivity of the network. The scale-free topology of real networks has very important consequences on their functioning. For example, we have discovered that scale-free networks are extremely resilient to the random disruption of their nodes. On the other hand, the selective removal of the nodes with highest degree induces a rapid breakdown of the network to isolated subparts that cannot communicate with each other. The non-trivial scaling of the degree distribution of real networks is also an indication of their assembly and evolution. Indeed, our modeling studies have shown us that there are general principles governing the evolution of networks. Most networks start from a small seed and grow by the addition of new nodes which attach to the nodes already in the system. This process obeys preferential attachment: the new nodes are more likely to connect to nodes with already high degree. We have proposed a simple model based on these two principles wich was able to reproduce the power-law degree distribution of real networks. Perhaps even more importantly, this model paved the way to a new paradigm of network modeling, trying to capture the evolution of networks, not just their static topology.

18,415 citations