scispace - formally typeset
Search or ask a question
Author

Albert Weller

Bio: Albert Weller is an academic researcher from Max Planck Society. The author has contributed to research in topics: Radical ion & Electron transfer. The author has an hindex of 35, co-authored 61 publications receiving 7864 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the rate constants of 60 typical electron donor-acceptor systems have been measured in de-oxygenated acetonitrile and are shown to be correlated with the free enthalpy change, ΔG23, involved in the actual electron transfer process.
Abstract: Fluorescence quenching rate constants, kq, ranging from 106 to 2 × 1010 M−1 sec−1, of more than 60 typical electron donor-acceptor systems have been measured in de-oxygenated acetonitrile and are shown to be correlated with the free enthalpy change, ΔG23, involved in the actual electron transfer process in the encounter complex and varying between + 5 and −60 kcal/mole. The correlation which is based on the mechanism of adiabatic outer-sphere electron transfer requires ΔG≠23, the activation free enthalpy of this process to be a monotonous function of ΔG23 and allows the calculation of rate constants of electron transfer quenching from spectroscopic and electrochemical data. A detailed study of some systems where the calculated quenching constants differ from the experimental ones by several orders of magnitude revealed that the quenching mechanism operative in these cases was hydrogen-atom rather than electron transfer. The conditions under which these different mechanisms apply and their consequences are discussed.

3,485 citations


Cited by
More filters
Book
01 Jan 1983
TL;DR: This book describes the fundamental aspects of fluorescence, the biochemical applications of this methodology, and the instrumentation used in fluorescence spectroscopy.
Abstract: Fluorescence methods are being used increasingly in biochemical, medical, and chemical research. This is because of the inherent sensitivity of this technique. and the favorable time scale of the phenomenon of fluorescence. 8 Fluorescence emission occurs about 10- sec (10 nsec) after light absorp tion. During this period of time a wide range of molecular processes can occur, and these can effect the spectral characteristics of the fluorescent compound. This combination of sensitivity and a favorable time scale allows fluorescence methods to be generally useful for studies of proteins and membranes and their interactions with other macromolecules. This book describes the fundamental aspects of fluorescence. and the biochemical applications of this methodology. Each chapter starts with the -theoreticalbasis of each phenomenon of fluorescence, followed by examples which illustrate the use of the phenomenon in the study of biochemical problems. The book contains numerous figures. It is felt that such graphical presentations contribute to pleasurable reading and increased understand ing. Separate chapters are devoted to fluorescence polarization, lifetimes, quenching, energy transfer, solvent effects, and excited state reactions. To enhance the usefulness of this work as a textbook, problems are included which illustrate the concepts described in each chapter. Furthermore, a separate chapter is devoted to the instrumentation used in fluorescence spectroscopy. This chapter will be especially valuable for those perform ing or contemplating fluorescence measurements. Such measurements are easily compromised by failure to consider a number of simple principles."

28,073 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a model of turbulence in which the Reynolds stresses are determined from the solution of transport equations for these variables and for the turbulence energy dissipation rate E. Particular attention is given to the approximation of the pressure-strain correlations; the forms adopted appear to give reasonably satisfactory partitioning of the stresses both near walls and in free shear flows.
Abstract: The paper develops proposals for a model of turbulence in which the Reynolds stresses are determined from the solution of transport equations for these variables and for the turbulence energy dissipation rate E. Particular attention is given to the approximation of the pressure-strain correlations; the forms adopted appear to give reasonably satisfactory partitioning of the stresses both near walls and in free shear flows. Numerical solutions of the model equations are presented for a selection of strained homogeneous shear flows and for two-dimensional inhomogeneous shear flows including the jet, the wake, the mixing layer and plane channel flow. In addition, it is shown that the closure does predict a very strong influence of secondary strain terms for flow over curved surfaces.

3,855 citations